The RNA Polymerase Dictates ORF1 Requirement and Timing of LINE and SINE Retrotransposition

نویسندگان

  • Emily N. Kroutter
  • Victoria P. Belancio
  • Bradley J. Wagstaff
  • Astrid M. Roy-Engel
چکیده

Mobile elements comprise close to one half of the mass of the human genome. Only LINE-1 (L1), an autonomous non-Long Terminal Repeat (LTR) retrotransposon, and its non-autonomous partners-such as the retropseudogenes, SVA, and the SINE, Alu-are currently active human retroelements. Experimental evidence shows that Alu retrotransposition depends on L1 ORF2 protein, which has led to the presumption that LINEs and SINEs share the same basic insertional mechanism. Our data demonstrate clear differences in the time required to generate insertions between marked Alu and L1 elements. In our tissue culture system, the process of L1 insertion requires close to 48 hours. In contrast to the RNA pol II-driven L1, we find that pol III transcribed elements (Alu, the rodent SINE B2, and the 7SL, U6 and hY sequences) can generate inserts within 24 hours or less. Our analyses demonstrate that the observed retrotransposition timing does not dictate insertion rate and is independent of the type of reporter cassette utilized. The additional time requirement by L1 cannot be directly attributed to differences in transcription, transcript length, splicing processes, ORF2 protein production, or the ability of functional ORF2p to reach the nucleus. However, the insertion rate of a marked Alu transcript drastically drops when driven by an RNA pol II promoter (CMV) and the retrotransposition timing parallels that of L1. Furthermore, the "pol II Alu transcript" behaves like the processed pseudogenes in our retrotransposition assay, requiring supplementation with L1 ORF1p in addition to ORF2p. We postulate that the observed differences in retrotransposition kinetics of these elements are dictated by the type of RNA polymerase generating the transcript. We present a model that highlights the critical differences of LINE and SINE transcripts that likely define their retrotransposition timing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro properties of the first ORF protein from mouse LINE-1 support its role in ribonucleoprotein particle formation during retrotransposition.

LINEs are transposable elements, widely distributed among eukaryotes, that move via reverse transcription of an RNA intermediate. Mammalian LINEs have two ORFs (ORF1 and ORF2). The proteins encoded by these ORFs play important roles in the retrotransposition process. Although the predicted amino acid sequence of ORF1 is not closely related to any known proteins, it is highly basic; thus, it has...

متن کامل

LINEs Mobilize SINEs in the Eel through a Shared 3′ Sequence

We characterized members of the LINE (UnaL2) and SINE (UnaSINE1) families from the eel genome and found that these LINE/SINE partners share similar 3' tails. A retrotransposition assay in HeLa cells demonstrated that the 3' conserved tail of UnaL2 is necessary for its retrotransposition. This 3' tail is recognized in trans by the UnaL2 reverse transcriptase at a surprisingly high rate, and that...

متن کامل

The full-length transcript of the I factor, a LINE element of Drosophila melanogaster, is a potential bicistronic RNA messenger.

The I factor of Drosophila melanogaster is a retrotransposon of the LINE superfamily. The I factor displays two non-overlapping open reading frames (ORFs) that have the potential to encode for a nucleic acid-binding protein (ORF1) and a reverse transcriptase (ORF2). Retrotransposition of the I factor has been demonstrated and a putative full-length RNA intermediate has been identified. No other...

متن کامل

The dicistronic RNA from the mouse LINE-1 retrotransposon contains an internal ribosome entry site upstream of each ORF: implications for retrotransposition

Most eukaryotic mRNAs are monocistronic and translated by cap-dependent initiation. LINE-1 RNA is exceptional because it is naturally dicistronic, encoding two proteins essential for retrotransposition, ORF1p and ORF2p. Here, we show that sequences upstream of ORF1 and ORF2 in mouse L1 function as internal ribosome entry sites (IRESes). Deletion analysis of the ORF1 IRES indicates that RNA stru...

متن کامل

APOBEC3DE Inhibits LINE-1 Retrotransposition by Interacting with ORF1p and Influencing LINE Reverse Transcriptase Activity

Human long interspersed elements 1 (LINE-1 or L1) is the only autonomous non-LTR retroelement in humans and has been associated with genome instability, inherited genetic diseases, and the development of cancer. Certain human APOBEC3 family proteins are known to have LINE-1 restriction activity. The mechanisms by which APOBEC3 affects LINE-1 retrotransposition are not all well characterized; he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Genetics

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2009