Comparison of Frameworks for Parallel Multiobjective Evolutionary Optimization in Dynamic Problems

نویسندگان

  • Mario Cámara
  • Julio Ortega
  • Francisco de Toro
چکیده

In this chapter some alternatives are discussed to take advantage of parallel computers in dynamic multi-objective optimization problems (DMO) using evolutionary algorithms. In DMO problems, the objective functions, the constraints, and hence, also the solutions, can change over time and usually demand to be solved online. Thus, high performance computing approaches, such as parallel processing, should be applied to these problems to meet the quality requirements within the given time constraints. Taking this into account, we describe two generic parallel frameworks for multi-objective evolutionary algorithms. These frameworks are used to compare the parallel processing performance of some multi-objective optimization evolutionary algorithms: our previously proposed algorithms, SFGA and SFGA2, in conjunction with SPEA2 and NSGA-II. We also propose a model to explain the benefits of parallel processing in multi-objective problems and the speedup results observed in our experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Tackling Dynamic Problems with Multiobjective Evolutionary Algorithms

In this chapter, we discuss the use of multiobjective evolutionary algorithms (MOEAs) for solving single-objective optimization problems in dynamic environments. Specifically, we investigate the consideration of a second (artificial) objective, with the aim of maintaining greater population diversity and adaptability. The paper suggests and compares a number of alternative ways to express this ...

متن کامل

Multiobjective evolutionary algorithm based on multimethod with dynamic resources allocation

In the last two decades, multiobjective optimization has become main stream and various multiobjective evolutionary algorithms (MOEAs) have been suggested in the field of evolutionary computing (EC) for solving hard combinatorial and continuous multiobjective optimization problems. Most MOEAs employ single evolutionary operators such as crossover, mutation and selection for population evolution...

متن کامل

PSFGA: A Parallel Genetic Algorithm for Multiobjective Optimization

This paper presents the Parallel Single Front Genetic Algorithm (PSFGA), a parallel Pareto-based algorithm for multiobjective optimization problems based on an evolutionary procedure. In this procedure, a population of solutions is sorted with respect to the values of the objective functions and partitioned into subpopulations which are distributed among the processors. Each processor applies a...

متن کامل

Solving Multiobjective Optimization Problems using Evolutionary Algorithm

Being capable of finding a set of pareto–optimal solutions in a single run, which is a necessary feature for multi–criteria decision making, Evolutionary Algorithms (EAs) has attracted many researchers and practitioners to address the solution of Multiobjective Optimization Problems (MOPs). In a previous work, we developed a Pareto Differential Evolution (PDE) algorithm to handle multiobjective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012