A Framework for Generalizing Graph-based Representation Learning Methods

نویسندگان

  • Nesreen K. Ahmed
  • Ryan A. Rossi
  • Rong Zhou
  • John Boaz Lee
  • Xiangnan Kong
  • Theodore L. Willke
  • Hoda Eldardiry
چکیده

Random walks are at the heart of many existing deep learning algorithms for graph data. However, such algorithms have many limitations that arise from the use of random walks, e.g., the features resulting from these methods are unable to transfer to new nodes and graphs as they are tied to node identity. In this work, we introduce the notion of attributed random walks which serves as a basis for generalizing existing methods such as DeepWalk, node2vec, and many others that leverage random walks. Our proposed framework enables these methods to be more widely applicable for both transductive and inductive learning as well as for use on graphs with attributes (if available). This is achieved by learning functions that generalize to new nodes and graphs. We show that our proposed framework is effective with an average AUC improvement of 16.1% while requiring on average 853 times less space than existing methods on a variety of graphs from several domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

آموزش منیفلد با استفاده از تشکیل گراف منیفلدِ مبتنی بر بازنمایی تنک

In this paper, a sparse representation based manifold learning method is proposed. The construction of the graph manifold in high dimensional space is the most important step of the manifold learning methods that is divided into local and gobal groups. The proposed graph manifold extracts local and global features, simultanstly. After construction the sparse representation based graph manifold,...

متن کامل

On Generalizing Neural Node Embedding Methods to Multi-Network Problems

Representation learning has attracted significant interest in the community and has been shown to be successful in tasks involving one graph, such as link prediction and node classification. In this paper, we conduct an empirical study of two leading deep learning based node embedding methods, node2vec and SDNE, to examine their suitability for problems that involvemultiple graphs. Although the...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Exploiting the Physics of State-Space Search

This paper is a blueprint for the development of a fully domain-independent single agent and multiagent heuristic search system. The paper gives a graph-theoretic representation of search problems based on conceptual graphs, and outlines two different learning systems. One, all "informed learner" makes use of the the graph-theoretic definition of a search probleln or game in playing and adaptin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1709.04596  شماره 

صفحات  -

تاریخ انتشار 2017