The Transcriptional Targets of Mutant FOXL2 in Granulosa Cell Tumours

نویسندگان

  • Roseanne Rosario
  • Hiromitsu Araki
  • Cristin G. Print
  • Andrew N. Shelling
چکیده

BACKGROUND Despite their distinct biology, granulosa cell tumours (GCTs) are treated the same as other ovarian tumours. Intriguingly, a recurring somatic mutation in the transcription factor Forkhead Box L2 (FOXL2) 402C>G has been found in nearly all GCTs examined. This investigation aims to identify the pathogenicity of mutant FOXL2 by studying its altered transcriptional targets. METHODS The expression of mutant FOXL2 was reduced in the GCT cell line KGN, and wildtype and mutant FOXL2 were overexpressed in the GCT cell line COV434. Total RNA was hybridised to Affymetrix U133 Plus 2 microarrays. Comparisons were made between the transcriptomes of control cells and cells altered by FOXL2 knockdown and overexpression, to detect potential transcriptional targets of mutant FOXL2. RESULTS The overexpression of wildtype and mutant FOXL2 in COV434, and the silencing of mutant FOXL2 expression in KGN, has shown that mutant FOXL2 is able to differentially regulate the expression of many genes, including two well known FOXL2 targets, StAR and CYP19A. We have shown that many of the genes regulated by mutant FOXL2 are clustered into functional annotations of cell death, proliferation, and tumourigenesis. Furthermore, TGF-β signalling was found to be enriched when using the gene annotation tools GATHER and GeneSetDB. This enrichment was still significant after performing a robust permutation analysis. CONCLUSION Given that many of the transcriptional targets of mutant FOXL2 are known TGF-β signalling genes, we suggest that deregulation of this key antiproliferative pathway is one way mutant FOXL2 contributes to the pathogenesis of adult-type GCTs. We believe this pathway should be a target for future therapeutic interventions, if outcomes for women with GCTs are to improve.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovery of novel protein partners of the transcription factor FOXL2 provides insights into its physiopathological roles.

FOXL2 transcription factor is responsible for the Blepharophimosis Ptosis Epicantus inversus Syndrome (BPES), a genetic disease involving craniofacial malformations often associated with ovarian failure. Recently, a somatic FOXL2 mutation (p.C134W) has been reported in >95% of adult-type granulosa cell tumors. Here, we have identified 10 novel FOXL2 partners by yeast-two-hybrid screening and co...

متن کامل

The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance.

Human Blepharophimosis/ptosis/epicanthus inversus syndrome (BPES) type I is an autosomal dominant disorder associated with premature ovarian failure (POF) caused by mutations in FOXL2, a winged-helix/forkhead domain transcription factor. Although it has been shown that FOXL2 is expressed in adult ovaries, its function during folliculogenesis is not known. Here, we show that the murine Foxl2 gen...

متن کامل

LATS1 phosphorylates forkhead L2 and regulates its transcriptional activity.

Forkhead L2 (FOXL2) is expressed in the ovary and acts as a transcriptional repressor of the steroidogenic acute regulatory (StAR) gene, a marker of granulosa cell differentiation. Human FOXL2 mutations that produce truncated proteins lacking the COOH terminus result in blepharophimosis/ptosis/epicanthus inversus (BPES) syndrome type I, which is associated with premature ovarian failure (POF). ...

متن کامل

Differential Apoptotic and Proliferative Activities of Wild-type FOXL2 and Blepharophimosis-ptosis-epicanthus Inversus Syndrome (BPES)-associated Mutant FOXL2 Proteins

FOXL2 is an essential transcription factor that is required for proper development of the ovary and eyelid. Mutations in FOXL2 cause an autosomal dominant genetic disorder, blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). BPES type I patients have eyelid malformation and premature ovarian failure leading to infertility, whereas women with type II BPES are fertile or subfertile. In t...

متن کامل

Overexpression of Wild-Type but Not C134W Mutant FOXL2 Enhances GnRH-Induced Cell Apoptosis by Increasing GnRH Receptor Expression in Human Granulosa Cell Tumors

The etiology of granulosa cell tumors (GCTs) is largely unknown. The primary mode of treatment is surgical, however not all women are cured by surgery alone. Thus, it is important to develop improved treatments through a greater understanding of the molecular mechanisms that contribute to this disease. Recently, it has been shown that a FOXL2 402C>G (C134W) mutation is present in 97% of human a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012