Methods for Quantifying the Causal Structure of bivariate Time Series
نویسندگان
چکیده
In the study of complex systems one of the major concerns is the detection and characterization of causal interdependencies and couplings between different subsystems. The nature of such dependencies is typically not only nonlinear but also asymmetric and thus makes the use of symmetric and linear methods ineffective. Moreover, signals sampled from real world systems are noisy and short, posing additional constraints on the estimation of the underlying couplings. In this article, we compare a set of six recently introduced methods for quantifying the causal structure of bivariate time series extracted from systems with complex dynamical behavior. We discuss the usefulness of the methods for detecting asymmetric couplings and directional flow of information in the context of uniand bidirectionally coupled deterministic chaotic systems.
منابع مشابه
On The Behavior of Malaysian Equities: Fractal Analysis Approach
Fractal analyzing of continuous processes have recently emerged in literatures in various domains. Existence of long memory in many processes including financial time series have been evidenced via different methodologies in many literatures in past decade, which has inspired many recent literatures on quantifying the fractional Brownian motion (fBm) characteristics of financial time series. Th...
متن کاملOn Bivariate Generalized Exponential-Power Series Class of Distributions
In this paper, we introduce a new class of bivariate distributions by compounding the bivariate generalized exponential and power-series distributions. This new class contains the bivariate generalized exponential-Poisson, bivariate generalized exponential-logarithmic, bivariate generalized exponential-binomial and bivariate generalized exponential-negative binomial distributions as specia...
متن کاملGranger Causality between Multiple Interdependent Neurobiological Time Series: Blockwise versus Pairwise Methods
Granger causality is becoming an important tool for determining causal relations between neurobiological time series. For multivariate data, there is often the need to examine causal relations between two blocks of time series, where each block could represent a brain region of interest. Two alternative methods are available. In the pairwise method, bivariate autoregressive models are fit to al...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملTransition Models for Analyzing Longitudinal Data with Bivariate Mixed Ordinal and Nominal Responses
In many longitudinal studies, nominal and ordinal mixed bivariate responses are measured. In these studies, the aim is to investigate the effects of explanatory variables on these time-related responses. A regression analysis for these types of data must allow for the correlation among responses during the time. To analyze such ordinal-nominal responses, using a proposed weighting approach, an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 17 شماره
صفحات -
تاریخ انتشار 2007