Systematic identification of conserved bacterial c-di-AMP receptor proteins.
نویسندگان
چکیده
Nucleotide signaling molecules are important messengers in key pathways that allow cellular responses to changing environments. Canonical secondary signaling molecules act through specific receptor proteins by direct binding to alter their activity. Cyclic diadenosine monophosphate (c-di-AMP) is an essential signaling molecule in bacteria that has only recently been discovered. Here we report on the identification of four Staphylococcus aureus c-di-AMP receptor proteins that are also widely distributed among other bacteria. Using an affinity pull-down assay we identified the potassium transporter-gating component KtrA as a c-di-AMP receptor protein, and it was further shown that this protein, together with c-di-AMP, enables S. aureus to grow in low potassium conditions. We defined the c-di-AMP binding activity within KtrA to the RCK_C (regulator of conductance of K(+)) domain. This domain is also found in a second S. aureus protein, a predicted cation/proton antiporter, CpaA, which as we show here also directly binds c-di-AMP. Because RCK_C domains are found in proteinaceous channels, transporters, and antiporters from all kingdoms of life, these findings have broad implications for the regulation of different pathways through nucleotide-dependent signaling. Using a genome-wide nucleotide protein interaction screen we further identified the histidine kinase protein KdpD that in many bacteria is also involved in the regulation of potassium transport and a PII-like signal transduction protein, which we renamed PstA, as c-di-AMP binding proteins. With the identification of these widely distributed c-di-AMP receptor proteins we link the c-di-AMP signaling network to a central metabolic process in bacteria.
منابع مشابه
Molecular basis for the recognition of cyclic-di-AMP by PstA, a PII-like signal transduction protein
Cyclic-di-AMP (c-di-AMP) is a broadly conserved bacterial second messenger that is of importance in bacterial physiology. The molecular receptors mediating the cellular responses to the c-di-AMP signal are just beginning to be discovered. PstA is a previously uncharacterized PII -like protein which has been identified as a c-di-AMP receptor. PstA is widely distributed and conserved among Gram-p...
متن کاملThe Cyclic Dinucleotide c-di-AMP Is an Allosteric Regulator of Metabolic Enzyme Function
Cyclic di-adenosine monophosphate (c-di-AMP) is a broadly conserved second messenger required for bacterial growth and infection. However, the molecular mechanisms of c-di-AMP signaling are still poorly understood. Using a chemical proteomics screen for c-di-AMP-interacting proteins in the pathogen Listeria monocytogenes, we identified several broadly conserved protein receptors, including the ...
متن کاملکاربری پروتیینهای جدید در ساخت واکسن استافیلوکوکوس اورئوس
Background: Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the spread of antibiotic resistance. Novel potential targets for therapeutic antibodies are products of staphylococcal genes expressed during human infection. Previously, the secreted and surface-exposed proteins among seroreactive antigens have been discovered. Furthermore...
متن کاملSystematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems
Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known ...
متن کاملExpression and Purification of HCV Core and Core-E1E2 Proteins in Different Bacterial Strains
Background: Hepatitis C virus (HCV) is a main public health problem causing chronic liver infection and subsequently liver cirrhosis and lethal hepatocellular carcinoma (HCC). Vaccination based on HCV capsid proteins has attracted a special interest for prevention of viral infections. The core protein is a basic and evolutionary most conserved protein, which regulates the cellular processes rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 22 شماره
صفحات -
تاریخ انتشار 2013