Effects of the dipolar form of phloretin on potassium conductance in squid giant axons.
نویسندگان
چکیده
The effects of phloretin on membrane ionic conductances have been studied in the giant axon of the squid, Loligo pealei. Phloretin reversibly suppresses the potassium and sodium conductances and modifies their dependence on membrane potential (Em). Its effects on the potassium conductance (GK) are much greater than on the sodium conductance; no effects on sodium inactivation are observed. Internal perfusion of phloretin produces both greater shifts in GK(Em) and greater reductions maximum GK than does external perfusion; the effect of simultaneous internal and external perfusion is little greater than that of internal perfusion alone. Lowering the internal pH, which favors the presence of the neutral species of weakly acidic phloretin (pKa 7.4), potentiates the actions of internally perfused phloretin. Other organic cations with dipole moments similar to phloretin's have little effect on either potassium or sodium conductances in squid axons. These results can be explained by either of two mechanisms; on postulates a phloretin "receptor" near the voltage sensor component of the potassium channel which is accessible to drug molecules applied at either the outer or inner membrane surface and is much more sensitive to the neutral than the negatively charged form of the drug. The other mechanism proposes that neutral phloretin molecules are dispersed in an ordered array in the membrane interior, producing a diffuse dipole field which modifies potassium channel gating. Different experimental results support these two mechanisms, and neither hypothesis can be disproven.
منابع مشابه
Phosphorylation modulates potassium conductance and gating current of perfused giant axons of squid
The presence of internal Mg-ATP produced a number of changes in the K conductance of perfused giant axons of squid. For holding potentials between -40 and -50 mV, steady-state K conductance increased for depolarizations to potentials more positive than approximately -15 mV and decreased for smaller depolarizations. The voltage dependencies of both steady-state activation and inactivation also a...
متن کاملTracer and Nontracer Potassium Fluxes in Squid Giant Axons and the Effects of Changes in External Potassium Concentration and Membrane Potential
The efflux of labeled and unlabeled potassium ions from the squid giant axon has been measured under a variety of experimental conditions. Axons soaked in sea water containing 42K ions lost radioactivity when placed in inactive sea water according to kinetics which indicate the presence of at least two cellular compartments. A rapidly equilibrating superficial compartment, probably the Schwann ...
متن کاملMolecular Identification of SqKvlA A Candidate for the Delayed Rectifier K Channel in Squid Giant Axon
We have cloned the cDNA for a squid Kvl potassium channel (SqKvlA). SqKvlA mRNA is selectively expressed in giant fiber lobe (GFL) neurons, the somata of the giant axons. Western blots detect two forms of SqKvlA in both GFL neuron and giant axon samples. Functional properties of SqKvlA currents expressed in Xenopus oocytes are very similar to macroscopic currents in GFL neurons and giant axons....
متن کاملMolecular identification of SqKv1A. A candidate for the delayed rectifier K channel in squid giant axon
We have cloned the cDNA for a squid Kvl potassium channel (SqKv1A). SqKv1A mRNA is selectively expressed in giant fiber lobe (GFL) neurons, the somata of the giant axons. Western blots detect two forms of SqKv1A in both GFL neuron and giant axon samples. Functional properties of SqKv1A currents expressed in Xenopus oocytes are very similar to macroscopic currents in GFL neurons and giant axons....
متن کاملPharmacological and kinetic analysis of K channel gating currents
We have measured gating currents from the squid giant axon using solutions that preserve functional K channels and with experimental conditions that minimize Na channel contributions to these currents. Two pharmacological agents were used to identify a component of gating current that is associated with K channels. Low concentrations of internal Zn2+ that considerably slow K channel ionic curre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 31 2 شماره
صفحات -
تاریخ انتشار 1980