A Versatile Nonlinear Method for Predictive Modeling
نویسندگان
چکیده
As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method’s accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.
منابع مشابه
An ANOVA Based Analytical Dynamic Matrix Controller Tuning Procedure for FOPDT Models
Dynamic Matrix Control (DMC) is a widely used model predictive controller (MPC) in industrial plants. The successful implementation of DMC in practical applications requires a proper tuning of the controller. The available tuning procedures are mainly based on experience and empirical results. This paper develops an analytical tool for DMC tuning. It is based on the application of Analysis of V...
متن کاملاستراتژی کنترل پیش بین برای مدیریت توان در خودروی الکتریکی هیبرید موازی
In this paper, a hybrid model-based nonlinear optimal control method is used to compute the optimal power distribution and power management in parallel hybrid electric vehicles. In the power management strategy, for optimal power distribution between the internal combustion engine, electrical system and the other subsystems, nonlinear predictive control is applied. In achieving this goal, a hie...
متن کاملModeling of monthly flow duration curve using nonlinear regression method for un-gauged watersheds of Ardabil Province
The flow duration curve (FDC) represents the frequency distribution of water flow over a period of time, which is widely used in hydrology to evaluate different ranges of river water flow applications. Therefore, it is necessary to develop a suitable estimation model and method in un-gauged watersheds. To this end, in the present study, a modeling method based on nonlinear regression, for the p...
متن کاملA Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint
In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...
متن کاملPredictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors
This article presents predictive modeling of nonlinear guided wave propagation for structural health monitoring using both finite element method and analytical approach. In our study, the nonlinearity of the guided waves is generated by interaction with a nonlinear breathing crack. Two nonlinear finite element method techniques are used to simulate the breathing crack: (a) element activation/de...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015