Conservation of neuron number and size in entorhinal cortex layers II, III, and V/VI of aged primates.
نویسندگان
چکیده
Past dogma asserted that extensive loss of cortical neurons accompanies normal aging. However, recent stereologic studies in humans, monkeys, and rodents have found little evidence of age-related neuronal loss in several cortical regions, including the neocortex and hippocampus. Yet to date, a complete investigation of age-related neuronal loss or size change has not been undertaken in the entorhinal cortex, a retrohippocampal structure essential for learning and memory. The aged rhesus macaque monkey (Macaca mulatta), a species that develops beta-amyloid plaques and exhibits cognitive deficits with age, is considered the best commonly available model of aging in humans. In the present study, we examined changes in total neuron number and size in layers II, III, and V/VI of the intermediate division of the entorhinal cortex in aged vs. nonaged rhesus monkeys by using unbiased stereologic methods. Total neuron number was conserved in aged primates when compared with nonaged adults in entorhinal cortex layer II (aged = 56,500 +/- 12,100, nonaged adult = 48,500 +/- 10,900; P = 0.37), layer III (aged = 205, 600 +/- 50,700, nonaged adult = 187,600 +/- 60,300; P = 0.66), and layers V/VI (aged = 246,400 +/- 76,700, nonaged adult = 236,800 +/- 69,600; P = 0.87). In each of the layers examined, neuronal area and volume were also conserved with aging. This lack of morphologically evident neurodegeneration in primate entorhinal cortex with aging further supports the concept that fundamental differences exist between the processes of normal "healthy" aging and pathologic age-related neurodegenerative disorders such as Alzheimer's disease.
منابع مشابه
The Human Periallocortex: Layer Pattern in Presubiculum, Parasubiculum and Entorhinal Cortex. A Review
The cortical mantle is not homogeneous, so that three types of cortex can be distinguished: allocortex, periallocortex and isocortex. The main distinction among those three types is based on morphological differences, in particular the number of layers, overall organization, appearance, etc., as well as its connectivity. Additionally, in the phylogenetic scale, this classification is conserved ...
متن کاملVariation in effective stimulus patterns for induction of long-term potentiation across different layers of rat entorhinal cortex.
Neuronal activities in superficial (II and III) and deep (V and VI) layers of the entorhinal cortex (EC) are preferentially modulated by theta and sharp wave (SPW) EEG, respectively. We investigated the possibility that distinct EEG patterns represent optimal stimulus patterns for induction of long-term potentiation (LTP) in different layers of the EC. We examined effects of three different sti...
متن کاملNeurons in the fusiform gyrus are fewer and smaller in autism.
Abnormalities in face perception are a core feature of social disabilities in autism. Recent functional magnetic resonance imaging studies showed that patients with autism could perform face perception tasks. However, the fusiform gyrus (FG) and other cortical regions supporting face processing in controls are hypoactive in patients with autism. The neurobiological basis of this phenomenon is u...
متن کاملDiversity and Excitability of Deep Layer Entorhinal Cortical Neurons in a 2 Model of Temporal Lobe Epilepsy
32 The entorhinal cortex (ERC) is critically implicated in temporal lobe epileptogenesis – 33 the most common type of adult-epilepsy. Previous studies have suggested that epileptiform 34 discharges likely initiate in seizure-sensitive deep-layers (V-VI) of the medial entorhinal area 35 (MEA) and propagate into seizure-resistant superficial-layers (II-III) and hippocampus, 36 establishing a lami...
متن کاملDiversity and excitability of deep-layer entorhinal cortical neurons in a model of temporal lobe epilepsy.
The entorhinal cortex (ERC) is critically implicated in temporal lobe epileptogenesis--the most common type of adult epilepsy. Previous studies have suggested that epileptiform discharges likely initiate in seizure-sensitive deep layers (V-VI) of the medial entorhinal area (MEA) and propagate into seizure-resistant superficial layers (II-III) and hippocampus, establishing a lamina-specific dist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of comparative neurology
دوره 422 3 شماره
صفحات -
تاریخ انتشار 2000