A Novel Differential Evolution Based Algorithm for Higher Order Neural Network Training
نویسندگان
چکیده
In this paper, an application of an adaptive differential evolution (DE) algorithm for training higher order neural networks (HONNs), especially the Pi-Sigma Network (PSN) has been introduced. The proposed algorithm is a variant of DE/rand/2/bin and possesses two modifications to avoid the shortcomings of DE/rand/2/bin. The base vector for perturbation is the best vector out of the three randomly selected individuals for mutation, which actually assists intensification keeping the diversification property of DE/rand/2/bin; and novel mutation and crossover strategies are followed considering both exploration and exploitation. The performance of the proposed algorithm for HONN training is evaluated through a wellknown neural network training benchmark i.e. to classify the parity-p problems. The results obtained from the proposed algorithm to train HONN have been compared with solutions from the following algorithms: the basic CRO algorithm, CRO-HONNT and the two most popular variants of the differential evolution algorithm (DE/Rand/1/bin and DE/best/1/bin). It is observed that the application of the proposed algorithm to HONN training (DE-HONNT) performs statistically better than that of other algorithms.
منابع مشابه
A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملNumerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network
In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...
متن کاملNumerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network
In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...
متن کاملA Novel Chemical Reaction Optimization Algorithm for Higher Order Neural Network Training
In this paper, an application of a novel chemical reaction optimization (CRO) algorithm for training higher order neural networks (HONNs), especially the Pi-Sigma Network (PSN) has been presented. In contrast to basic CRO algorithms, the proposed CRO algorithm used to train HONN possesses two modifications. The reactant size (population size) remains fixed throughout all the iteration, which ma...
متن کاملTwo Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate
Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013