Orientational order and glassy states in networks of semiflexible polymers.
نویسندگان
چکیده
Motivated by the structure of networks of cross-linked cytoskeletal biopolymers, we study orientationally ordered phases in two-dimensional networks of randomly cross-linked semiflexible polymers. We consider permanent cross-links which prescribe a finite angle and treat them as quenched disorder in a semimicroscopic replica field theory. Starting from a fluid of un-cross-linked polymers and small polymer clusters (sol) and increasing the cross-link density, a continuous gelation transition occurs. In the resulting gel, the semiflexible chains either display long-range orientational order or are frozen in random directions depending on the value of the crossing angle, the cross-link concentration, and the stiffness of the polymers. A crossing angle θ~2π/M leads to long-range M-fold orientational order, for example, "hexatic" or "tetratic" for θ=60° or 90°, respectively. The transition to the orientationally ordered state is discontinuous and the critical cross-link density, which is higher than that of the gelation transition, depends on the bending stiffness of the polymers and the cross-link angle: The higher the stiffness and the lower the M, the lower is the critical number of cross-links. In between the sol and the long-range ordered state, we always expect a gel which is a statistically isotropic amorphous solid with random positional and random orientational localization of the participating polymers.
منابع مشابه
Glassy dynamics of nanoparticles in semiflexible ring polymer nanocomposite melts
By employing molecular dynamics simulations, we explore the dynamics of NPs in semiflexible ring polymer nanocomposite melts. A novel glass transition is observed for NPs in semiflexible ring polymer melts as the bending energy (Kb) of ring polymers increases. For NPs in flexible ring polymer melts (Kb = 0), NPs move in the classic diffusive behavior. However, for NPs in semiflexible ring polym...
متن کاملAnisotropic Hydrodynamic Mean-Field Theory for Semiflexible Polymers under Tension
We introduce an anisotropic mean-field approach for the dynamics of semiflexible polymers under tension. The theory is designed to exactly reproduce the lowest order equilibrium averages of a stretched polymer, and includes the non-trivial influence of long-range hydrodynamic coupling. Validated by Brownian hydrodynamics simulations, the theory is highly accurate over a broad parameter range, e...
متن کاملFast and slow dynamics of the cytoskeleton.
Material moduli of the cytoskeleton (CSK) influence a wide range of cell functions. There is substantial evidence from reconstituted F-actin gels that a regime exists in which the moduli scale with frequency with a universal exponent of 3/4. Such behaviour is entropic in origin and is attributable to fluctuations in semiflexible polymers driven by thermal forces, but it is not obvious a priori ...
متن کاملForce–extension relation of cross-linked anisotropic polymer networks
Cross-linked polymer networks with orientational order constitute a wide class of soft materials and are relevant to biological systems (e.g., F-actin bundles). We analytically study the nonlinear force–extension relation of an array of parallel-aligned, strongly stretched semiflexible polymers with random cross-links. In the strong stretching limit, the effect of the cross-links is purely entr...
متن کاملMonte Carlo simulation of the self-assembly and phase behavior of semiflexible equilibrium polymers.
Grand canonical Monte Carlo simulations of a simple model semiflexible equilibrium polymer system, consisting of hard sphere monomers reversibly self-assembling into chains of arbitrary length, have been performed using a novel sampling method to add or remove multiple monomers during a single MC move. Systems with two different persistence lengths and a range of bond association constants have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 83 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2011