A toy model of the five-dimensional universe with the cosmological constant

نویسنده

  • Wojciech Tarkowski
چکیده

A value of the cosmological constant in a toy model of the five-dimensional universe is calculated in such a manner that it remains in agreement with both astronomical observations and the quantum field theory concerning the zero-point fluctuations of the vacuum. The (negative) cosmological constant is equal to the inverse of the Planck length squared, which means that in the toy model the vanishing of the observed value of the cosmological constant is a consequence of the existence of an energy cutoff exactly at the level of the Planck scale. In turn, a model for both a virtual and a real particle–antiparticle pair is proposed which describes properly some energetic properties of both the vacuum fluctuations and created particles, as well as it allows one to calculate the discrete “bare” values of an elementary-particle mass, electric charge and intrinsic angular momentum (spin) at the energy cutoff. The relationships between the discussed model and some phenomena such as the Zitterbewegung and the Unruh–Davies effect are briefly analyzed, too. The proposed model also allows one to derive the Lorentz transformation and the Maxwell equations while considering the properties of the vacuum filled with the sea of virtual particles and their antiparticles. Finally, the existence of a finite value of the vacuum-energy density resulting from the toy model leads us to the formulation of dimensionless Einstein field equations which can be derived from the Lagrangian with a dimensionless (näıvely renormalized) coupling

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

افت و خیزهای برداری حول جواب وسون

 In Wesson's canonical model, the universe is assumed to be five dimensional (5D) empty space time. This model corresponds to a solution of the Einstein field equation in five dimensions which, from a four dimensional point of view, is equivalent to a universe with a positive cosmological constant. In this model, the fifth direction is perpendicular to the four dimensional space time and is not...

متن کامل

Bulk Viscous Bianchi Type VI0 Cosmological Model in the Self-creation Theory of Gravitation and in the General Theory of Relativity

In the second self-creation theory of gravitation and in the general theory of relativity, Bianchi type VI0 cosmological model in the presence of viscous fluid is studied. An exact solution of the field equations is given by considering the cosmological model yields a constant decelerations parameter q=constant and the coefficients of the metric are taken as A(t)=[c1t+c<su...

متن کامل

جوابهای کیهانشناسی معادلات برانس- دیکی با ثابت کیهانشناسی

  In this paper, the analytical solutions of Brans-Dicke (B-D) equations with cosmological constant are presented, in which the equation of state of the universe is P=mÙ° ρ , under the assumption φRn=c between the B-D field and the scale factor of the universe. The flat (K=0) Robertson- Walker metric has been considered for the metric of the universe. These solutions are rich in the sense that ...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

Searching for a solution to the cosmological constant problem – a toy model

This paper concerns the so-called cosmological constant problem. In order to solve it, we propose a toy model providing an extension of the dimensionality of spacetime, with an additional spatial dimension which is macroscopically unobservable. The toy model introduces no corrections to most predictions of the “standard” general relativity regarding, among others, the so-called “five tests of g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004