A New Initiative for Tiling, Stitching and Processing Geospatial Big Data in Distributed Computing Environments

نویسندگان

  • A. Olasz
  • Nguyen Thai
  • D. Kristóf
چکیده

Within recent years, several new approaches and solutions for Big Data processing have been developed. The Geospatial world is still facing the lack of well-established distributed processing solutions tailored to the amount and heterogeneity of geodata, especially when fast data processing is a must. The goal of such systems is to improve processing time by distributing data transparently across processing (and/or storage) nodes. These types of methodology are based on the concept of divide and conquer. Nevertheless, in the context of geospatial processing, most of the distributed computing frameworks have important limitations regarding both data distribution and data partitioning methods. Moreover, flexibility and expendability for handling various data types (often in binary formats) are also strongly required. This paper presents a concept for tiling, stitching and processing of big geospatial data. The system is based on the IQLib concept (https://github.com/posseidon/IQLib/) developed in the frame of the IQmulus EU FP7 research and development project (http://www.iqmulus.eu). The data distribution framework has no limitations on programming language environment and can execute scripts (and workflows) written in different development frameworks (e.g. Python, R or C#). It is capable of processing raster, vector and point cloud data. The above-mentioned prototype is presented through a case study dealing with country-wide processing of raster imagery. Further investigations on algorithmic and implementation details are in focus for the near future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloud Computing Technology Algorithms Capabilities in Managing and Processing Big Data in Business Organizations: MapReduce, Hadoop, Parallel Programming

The objective of this study is to verify the importance of the capabilities of cloud computing services in managing and analyzing big data in business organizations because the rapid development in the use of information technology in general and network technology in particular, has led to the trend of many organizations to make their applications available for use via electronic platforms hos...

متن کامل

Raster Data Partitioning for Supporting Distributed Gis Processing

In the geospatial sector big data concept also has already impact. Several studies facing originally computer science techniques applied in GIS processing of huge amount of geospatial data. In other research studies geospatial data is considered as it were always been big data (Lee and Kang, 2015). Nevertheless, we can prove data acquisition methods have been improved substantially not only the...

متن کامل

Adaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments

Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...

متن کامل

An Agent-based Architecture for Distributed Imagery & Geospatial Computing

Agent-based approaches have not yet been widely applied to highly complex, data intensive,large-scale information processing systems such as are found in the domain of imagery & geospatial computing. Such systems combine diverse and distributed types of imagery and geospatial data, and require collaboration from multiple experts and processing components. This paper gives a description of the d...

متن کامل

High-Performance Partition-based and Broadcast- based Spatial Join on GPU-Accelerated Clusters

The rapid growing volumes of spatial data have brought significant challenges on developing highperformance spatial data processing techniques in parallel and distributed computing environments. Spatial joins are important data management techniques in gaining insights from large-scale geospatial data. While several distributed spatial join techniques based on symmetric spatial partitions have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016