Fast Low-Rank Modifications of the Thin Singular Value Decomposition

نویسنده

  • Matthew Brand
چکیده

This paper develops an identity for additive modifications of a singular value decomposition (SVD) to reflect updates, downdates, shifts, and edits of the data matrix. This sets the stage for fast and memory-efficient sequential algorithms for tracking singular values and subspaces. In conjunction with a fast solution for the pseudo-inverse of a submatrix of an orthogonal matrix, we develop a scheme for computing a thin SVD of streaming data in a single pass with linear time complexity: A rank-r thin SVD of a p × q matrix can be computed in O(pqr) time for r √ min(p, q). © 2005 Elsevier Inc. All rights reserved. AMS classification: 49M27; 15A18; 15A23; 65F20

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition Based Rank Reduction SVD Approach

Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...

متن کامل

Fast Low-Rank Modifications of the Think Singular Value Decomposition

This paper develops an identity for additive modivations of a singular value decomposition (SVD) to reflect updates, downdates, shifts, and edits of the data matrix. This sets the stage for fast and ememory-efficient sequential algorithms for tracking singular values and subspaces. In conjunction with a fast solution for the pseudo-inverse of a submatrix of an orthogonal matrix, we develop a sc...

متن کامل

A Fast Implementation of Singular Value Thresholding Algorithm using Recycling Rank Revealing Randomized Singular Value Decomposition

In this paper, we present a fast implementation of the Singular Value Thresholding (SVT) algorithm for matrix completion. A rank-revealing randomized singular value decomposition (RSVD) algorithm is used to adaptively carry out partial singular value decomposition (SVD) to fast approximate the SVT operator given a desired, fixed precision. We extend the RSVD algorithm to a recycling rank reveal...

متن کامل

Symbolic computation of the Duggal transform

Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...

متن کامل

Subspace Iteration Randomization and Singular Value Problems

A classical problem in matrix computations is the efficient and reliable approximation of a given matrix by a matrix of lower rank. The truncated singular value decomposition (SVD) is known to provide the best such approximation for any given fixed rank. However, the SVD is also known to be very costly to compute. Among the different approaches in the literature for computing low-rank approxima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005