Finsler Level Set Segmentation for Imagery in Oriented Domains
نویسندگان
چکیده
In this paper, we present a novel directional level set segmentation framework employing the theory of Finsler active contours. The framework provides a natural way to perform segmentation of image data in oriented domains. We share examples of this technique on diffusion-weighted magnetic resonance imagery (DW-MRI) for the segmentation of neural fiber bundles and we show examples of texture based segmentation using structure tensors. We also demonstrate that for some applications higher accuracy is achieved by the proposed framework than by level set methods that employ Riemannian metrics. This gain is attributed to the relaxation of the tensor model constraint which is imposed upon the metric in the Riemannian case.
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملFinsler Geodesics Evolution Model for Region based Active Contours
In this paper, we introduce a new deformable model for image segmentation, by reformulating a region based active contours energy into a geodesic contour energy involving a Finsler metric. As a result, we solve the region based active contours energy minimization problem without resorting to level set functions, but using a robust Eikonal equation framework. By sampling a set of control points ...
متن کامل3D Segmentation in CT Imagery with Conditional Random Fields and Histograms of Oriented Gradients
In this paper we focus on the problem of 3D segmention in volumetric computed tomography imagery to identify organs in the abdomen. We propose and evaluate different models and modeling strategies for 3D segmentation based on traditional Markov Random Fields (MRFs) and their discriminative counterparts known as Conditional Random Fields (CRFs). We also evaluate the utility of features based on ...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملPartial Differential Equations applied to Medical Image Segmentation
This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007