Correlation Functions for Random Involutions

نویسندگان

  • Peter J. Forrester
  • Taro Nagao
  • Eric M. Rains
چکیده

Our interest is in the scaled joint distribution associated with k-increasing subsequences for random involutions with a prescribed number of fixed points. We proceed by specifying in terms of correlation functions the same distribution for a Poissonized model in which both the number of symbols in the involution, and the number of fixed points, are random variables. From this, a de-Poissonization argument yields the scaled correlations and distribution function for the random involutions. These are found to coincide with the same quantities known in random matrix theory from the study of ensembles interpolating between the orthogonal and symplectic universality classes at the soft edge, the interpolation being due to a rank 1 perturbation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetrized random permutations

Selecting N random points in a unit square corresponds to selecting a random permutation. Placing symmetry restrictions on the points, we obtain special kinds of permutations : involutions, signed permutations and signed involutions. We are interested in the statistics of the length (in numbers of points) of the longest up/right path in each symmetry type as the number of points increases to in...

متن کامل

Profiles of Large Combinatorial Structures

We derive limit laws for random combinatorial structures using singularity analysis of generating functions. We begin with a study of the Boltzmann samplers of Flajolet and collaborators, a useful method for generating large discrete structures at random which is useful both for providing intuition and conjecture and as a possible proof technique. We then apply generating functions and Boltzman...

متن کامل

Involutions on Generating Functions

We study a family of involutions on the space of sequences. Many arithmetically or combinatorially interesting sequences appear as eigensequences of the involutions. We develop new tools for studying sequences using these involutions.

متن کامل

Ja n 20 04 Involutions Restricted by 3412 , Continued Fractions , and Chebyshev Polynomials

We study generating functions for the number of involutions, even involutions, and odd involutions in Sn subject to two restrictions. One restriction is that the involution avoid 3412 or contain 3412 exactly once. The other restriction is that the involution avoid another pattern τ or contain τ exactly once. In many cases we express these generating functions in terms of Chebyshev polynomials o...

متن کامل

Restricted 132 - Involutions

We study generating functions for the number of involutions of length n avoiding (or containing exactly once) 132 and avoiding (or containing exactly once) an arbitrary permutation τ of length k. In several interesting cases these generating functions depend only on k and can be expressed via Chebyshev polynomials of the second kind. In particular, we show that involutions of length n avoiding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005