Efficient Mining of Correlation Patterns in Spatial Point Data

نویسنده

  • Marko Salmenkivi
چکیده

We address the problem of analyzing spatial correlation between event types in large point data sets. Collocation rules are unsatisfactory, when confidence is not a sufficiently accurate interestingness measure, and Monte Carlo testing is infeasible, when the number of event types is large. We introduce an algorithm for mining correlation patterns, based on a non-parametric bootstrap test that, however, avoids the actual resampling by scanning each point and its distances to the events in the neighbourhood. As a real data set we analyze a large place name data set, the set of event types consisting of different linguistic features that appear in the place names. Experimental results show that the algorithm can be applied to large data sets with hundreds of event types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strategies of an Efficient Algorithm PARM to Generate Association Rules Mining Technique Based on Spatial Data

In the Association rule mining, originally proposed form market basket data, has potential applications in many areas. Spatial data, such as remote sensed imagery (RSI) data, is one of the promising application areas. Association Rule mining is one of the most popular data mining techniques which can be defined as extracting the interesting correlation and relation among large volume of transac...

متن کامل

A new method to consider spatial risk assessment of cross-correlated heavy metals using geo-statistical simulation

The soil samples were collected from 170 sampling stations in an arid area in Shahrood and Damghan, characterized by prevalence of mining activity. The levels of Co, Pb, Ni, Cs, Cu, Mn, Sr, V, Zn, Cr, and Tl were recorded in each sampling location. A new method known as min/max autocorrelation factor (MAF) was applied for the first time in the environmental research works to de-correlate these ...

متن کامل

Assessment of uncertainty for coal quality-tonnage curves through minimum spatial cross-correlation simulation

Coal quality-tonnage curves are helpful tools in optimum mine planning and can be estimated using geostatistical simulation methods. In the presence of spatially cross-correlated variables, traditional co-simulation methods are impractical and time consuming. This paper investigates a factor simulation approach based on minimization of spatial cross-correlations with the objective of modeling s...

متن کامل

The Analysis of Spatial Distribution Pattern of Ardabil Province ‎Industries ‎by Using Spatial Statistics in GIS Environment

Background and Amis: Unbalanced spatial distribution of industries in most regions of the developing countries, can be have undesirable economic, environmental and social effects. Understanding the spatial distribution patterns of industries is essential for their planning and distribution in the regions.The aim of present study is to analyze the distribution and spatial patterns of Ardabil ‎pr...

متن کامل

TESTING FOR “RANDOMNESS” IN SPATIAL POINT PATTERNS, USING TEST STATISTICS BASED ON ONE-DIMENSIONAL INTER-EVENT DISTANCES

To test for “randomness” in spatial point patterns, we propose two test statistics that are obtained by “reducing” two-dimensional point patterns to the one-dimensional one. Also the exact and asymptotic distribution of these statistics are drawn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006