Molecular mechanisms contributing to long-lasting synaptic plasticity at the temporoammonic-CA1 synapse.
نویسندگان
چکیده
The hippocampus and the nearby medial temporal lobe structures are required for the formation, consolidation, and retrieval of episodic memories. Sensory information enters the hippocampus via two inputs from entorhinal cortex (EC): One input (perforant path) makes synapses on the dendrites of dentate granule cells as the first set of synapses in the trisynaptic circuit, the other (temporoammonic; TA) makes synapses on the distal dendrites of CA1 neurons. Here we demonstrate that TA-CA1 synapses undergo both early- and late-phase long-term potentiation (LTP) in rat hippocampal slices. LTP at TA-CA1 synapses requires both NMDA receptor and voltage-gated Ca2+ channel activity. Furthermore, TA-CA1 LTP is insensitive to the blockade of fast inhibitory transmission (GABAA-mediated) and, interestingly, is dependent on GABAB-dependent slow inhibitory transmission. These findings indicate that the TA-CA1 synapses may rely on a refined modulation of inhibition to exhibit LTP.
منابع مشابه
The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing
In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic) path (pp-CA1 synapse) and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse). Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake a...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSynaptic strength at the temporoammonic input to the hippocampal CA1 region in vivo is regulated by NMDA receptors, metabotropic glutamate receptors and voltage-gated calcium channels
The hippocampal CA1 region receives cortical information via two main inputs: directly via the perforant (temporoammonic) path (pp-CA1 synapse) and indirectly via the tri-synaptic pathway. Although synaptic plasticity has been reported at the pp-CA1 synapse of freely behaving animals, the mechanisms underlying this phenomenon have not been investigated. Here, we explored whether long-term poten...
متن کاملLeptin Induces a Novel Form of NMDA Receptor-Dependent LTP at Hippocampal Temporoammonic-CA1 Synapses1,2,3
It is well documented that the hormone leptin regulates many central functions and that hippocampal CA1 pyramidal neurons are a key target for leptin action. Indeed, leptin modulates excitatory synaptic transmission and synaptic plasticity at the Schaffer-collateral input to CA1 neurons. However the impact of leptin on the direct temporoammonic (TA) input to CA1 neurons is not known. Here we sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Learning & memory
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2003