Geometry of Self { Affine Tiles
نویسندگان
چکیده
For a self{similar or self{aane tile in R n we study the following questions: 1) What is the boundary? 2) What is the convex hull? We show that the boundary is a graph directed self{aane fractal, and in the self{similar case we give an algorithm to compute its dimension. We give necessary and suucient conditions for the convex hull to be a polytope, and we give a description of the Gauss map of the convex hull.
منابع مشابه
Expanding Polynomials and Connectedness of Self-Affine Tiles
Little is known about the connectedness of self-affine tiles inRn . In this note we consider this property on the self-affine tiles that are generated by consecutive collinear digit sets. By using an algebraic criterion, we call it the height reducing property, on expanding polynomials (i.e., all the roots have moduli > 1), we show that all such tiles in Rn, n ≤ 3, are connected. The problem is...
متن کاملSelf-Affine Tiles in Rn
A self-affine tile in R is a set T of positive measure with A(T) = d ∈ $ < (T + d), where A is an expanding n × n real matrix with det (A) = m on integer, and $ = {d 1 ,d 2 , . . . , d m } ⊆ R is a set of m digits. It is known that self-affine tiles always give tilings of R by translation. This paper extends the known characterization of digit sets $ yielding self-affine tiles. It proves seve...
متن کاملA Survey on Topological Properties of Tiles Related to Number Systems
In the present paper we give an overview of topological properties of self-affine tiles. After reviewing some basic results on self-affine tiles and their boundary we give criteria for their local connectivity and connectivity. Furthermore, we study the connectivity of the interior of a family of tiles associated to quadratic number systems and give results on their fundamental group. If a self...
متن کاملRational Self-affine Tiles
An integral self-affine tile is the solution of a set equation AT = ⋃d∈D(T +d), where A is an n× n integer matrix and D is a finite subset of Z. In the recent decades, these objects and the induced tilings have been studied systematically. We extend this theory to matrices A ∈ Qn×n. We define rational self-affine tiles as compact subsets of the open subring R ×∏pKp of the adèle ring AK , where ...
متن کاملCanonical Self - Affine Tilings
An iterated function system Φ consisting of contractive affine mappings has a unique attractor F ⊆ R which is invariant under the action of the system, as was shown by Hutchinson [Hut]. This paper shows how the action of the function system naturally produces a tiling T of the convex hull of the attractor. These tiles form a collection of sets whose geometry is typically much simpler than that ...
متن کاملOn Disk-like Self-affine Tiles Arising from Polyominoes
In this paper we study a class of plane self-affine lattice tiles that are defined using polyominoes. In particular, we characterize which of these tiles are homeomorphic to a closed disk. It turns out that their topological structure depends very sensitively on their defining parameters. In order to achieve our results we use an algorithm of Scheicher and the second author which allows to dete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998