Computationally Efficient Technique for Nonlinear Poisson-Boltzmann Equation

نویسنده

  • Sanjay Kumar Khattri
چکیده

Discretization of non-linear Poisson-Boltzmann Equation equations results in a system of non-linear equations with symmetric Jacobian. The Newton algorithm is the most useful tool for solving non-linear equations. It consists of solving a series of linear system of equations (Jacobian system). In this article, we adaptively define the tolerance of the Jacobian systems. Numerical experiment shows that compared to the traditional method our approach can save a substantial amount of computational work. The presented algorithm can be easily incorporated in existing simulators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Finite Element Approximation of the Nonlinear Poisson-Boltzmann Equation

A widely used electrostatics model in the biomolecular modeling community, the nonlinear Poisson–Boltzmann equation, along with its finite element approximation, are analyzed in this paper. A regularized Poisson–Boltzmann equation is introduced as an auxiliary problem, making it possible to study the original nonlinear equation with delta distribution sources. A priori error estimates for the f...

متن کامل

Lattice Evolution Solution for the Nonlinear Poisson- Boltzmann Equation in Confined Domains

The lattice evolution method for solving the nonlinear Poisson-Boltzmann equation in confined domain is developed by introducing the second-order accurate Dirichlet and Neumann boundary implements, which are consistent with the non-slip model in lattice Boltzmann method for fluid flows. The lattice evolution method is validated by comparing with various analytical solutions and shows superior t...

متن کامل

Numerical Solution of Nonlinear Klein-Gordon Equation Using Lattice Boltzmann Method

In this paper, in order to extend the lattice Boltzmann method to deal with more nonlinear equations, a onedimensional (1D) lattice Boltzmann scheme with an amending function for the nonlinear Klein-Gordon equation is proposed. With the Taylor and Chapman-Enskog expansion, the nonlinear Klein-Gordon equation is recovered correctly from the lattice Boltzmann equation. The method is applied on so...

متن کامل

Simulation of Electroosmosis Using a Meshless Finite Point Method

A Finite Point Method (FPM) based on a weighted least squares interpolation is presented for the simulation of electroosmotic transport in capillaries. This method requires no mesh and involves no Galerkin-type integration, making it more computationally efficient than the traditional finite element method. The FPM has been employed to solve the non-linear Poisson-Boltzmann equation for charge ...

متن کامل

An Iterative Method for Finite-Element Solutions of the Nonlinear Poisson-Boltzmann Equation

A finite-element approach combined with an efficient iterative method have been used to provide a numerical solution of the nonlinear Poisson-Boltzmann equation. The iterative method solves the nonlinear equations arising from the FE discretization procedure by a node-by-node calculation. The performance of the proposed method is illustrated by applying it to the problem of two identical colloi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006