Speculation and Negation Scope Detection via Convolutional Neural Networks
نویسندگان
چکیده
Speculation and negation are important information to identify text factuality. In this paper, we propose a Convolutional Neural Network (CNN)-based model with probabilistic weighted average pooling to address speculation and negation scope detection. In particular, our CNN-based model extracts those meaningful features from various syntactic paths between the cues and the candidate tokens in both constituency and dependency parse trees. Evaluation on BioScope shows that our CNN-based model significantly outperforms the state-ofthe-art systems on Abstracts, a sub-corpus in BioScope, and achieves comparable performances on Clinical Records, another subcorpus in BioScope.
منابع مشابه
Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملInferring the Scope of Negation and Speculation Via Dependency Analysis
In the last few years negation and speculation scope classification systems have been developed successfully, most of them using machine–learning approaches. In this paper we present a competitive system that finds the scope of negation and speculation in sentences for English by means of syntactic dependency analysis without using machine–learning. A greedy algorithm first detects the cues (le...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملNeural Networks For Negation Scope Detection
Automatic negation scope detection is a task that has been tackled using different classifiers and heuristics. Most systems are however 1) highly-engineered, 2) English-specific, and 3) only tested on the same genre they were trained on. We start by addressing 1) and 2) using a neural network architecture. Results obtained on data from the *SEM2012 shared task on negation scope detection show t...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016