Quasipolynomial Normalisation in Deep Inference via Atomic Flows and Threshold Formulae
نویسندگان
چکیده
ABSTRACT. Jeřábek showed that analytic propositional-logic deep-inference proofs can be constructed in quasipolynomial time from nonanalytic proofs. In this work, we improve on that as follows: 1) we significantly simplify the technique; 2) our normalisation procedure is direct, i.e., it is internal to deep inference. The paper is self-contained, and provides a starting point and a good deal of information for tackling the problem of whether a polynomial-time normalisation procedure exists.
منابع مشابه
A Quasipolynomial Cut-Elimination Procedure in Deep Inference via Atomic Flows and Threshold Formulae
Jeřábek showed that analytic propositional-logic deep-inference proofs can be constructed in quasipolynomial time from nonanalytic proofs. In this work, we improve on that as follows: 1) we significantly simplify the technique; 2) our normalisation procedure is direct, i.e., it is internal to deep inference. The paper is self-contained, and provides a starting point and a good deal of informati...
متن کاملA Quasipolynomial Normalisation Procedure in Deep Inference
Jeřábek showed in 2008 that cuts in propositional-logic deep-inference proofs can be eliminated in quasipolynomial time. The proof is an indirect one relying on a result of Atserias, Galesi and Pudlák about monotone sequent calculus and a correspondence between this system and cut-free deep-inference proofs. In this paper we give a direct proof of Jeřábek’s result: we give a quasipolynomialtime...
متن کاملNormalisation Control in Deep Inference via Atomic Flows
We introduce ‘atomic flows’: they are graphs obtained from derivations by tracing atom occurrences and forgetting the logical structure. We study simple manipulations of atomic flows that correspond to complex reductions on derivations. This allows us to prove, for propositional logic, a new and very general normalisation theorem, which contains cut elimination as a special case. We operate in ...
متن کاملA General View of Normalisation through Atomic Flows
Atomic flows are a geometric invariant of classical propositional proofs in deep inference. In this thesis we use atomic flows to describe new normal forms of proofs, of which the traditional normal forms are special cases, we also give several normalisation procedures for obtaining the normal forms. We define, and use to present our results, a new deep-inference formalism called the functorial...
متن کاملA Note on Proofs of the Pigeonhole Principle in Deep Inference
It is known that the functional and onto variants of the propositional pigeonhole principle have polynomial-size proofs in the weakest deep inference systems. The unrestricted variant has quasipolynomial-size proofs when dag-like behaviour is permitted. Here we match that upper bound in systems free of dagness, and indeed other compression mechanisms, utilising a similar strategy to that of Ats...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Logical Methods in Computer Science
دوره 12 شماره
صفحات -
تاریخ انتشار 2009