Editorial: Biofilms from a Food Microbiology Perspective: Structures, Functions, and Control Strategies

نویسندگان

  • Avelino Álvarez-Ordóñez
  • Romain Briandet
چکیده

Materials and equipment in food processing industries are colonized by surface-associated microbial communities called biofilms. In these biostructures microorganisms are embedded in a complex organic matrix composed essentially of polysaccharides, nucleic acids, and proteins. This organic shield contributes to the mechanical biofilm cohesion and triggers tolerance to environmental stresses such as dehydration or nutrient deprivation. Notably, cells within a biofilm are more tolerant to sanitation processes and the action of antimicrobial agents than their free living (or planktonic) counterparts. Such properties make conventional cleaning and disinfection protocols normally not effective in eradicating these biocontaminants. Biofilms are thus a continuous source of persistent microorganisms, including spoilage and pathogenic microorganisms, leading to repeated contamination of processed food with important economic and safety impact. Alternatively, in some particular settings, biofilm formation by resident or technological microorganisms can be desirable, due to possible enhancement of food fermentations or as a means of bioprotection against the settlement of pathogenic microorganisms. In the last decades substantial research efforts have been devoted to unraveling mechanisms of biofilm formation, deciphering biofilm architecture, and understanding microbial interactions within those ecosystems. However, biofilms present a high level of complexity and many aspects remain yet to be fully understood. A lot of attention has been also paid to the development of novel strategies for preventing or controlling biofilm formation in industrial settings. Further research needs to be focused on the identification of new biocides effective against biofilm-associated microorganisms, the development of control strategies based on the inhibition of cell-to-cell communication, and the potential use of bacteriocins, bacteriocin-producing bacteria, phage, and natural antimicrobials as anti-biofilm agents, among others. This research topic aims to provide an avenue for dissemination of recent advances within the " biofilms " field, from novel knowledge on mechanisms of biofilm formation and biofilm architecture to novel strategies for biofilm control in food industrial settings. The research topic comprises three review articles, one perspective and 11 original research articles. Most of the contributions cover the most recent investigations on aspects related to the structures, architecture, and strategies for the control of biofilms formed by pathogenic or spoilage microorganisms on food processing surfaces, while two contributions are focused on the evaluation of biofilm formation by resident, technologically important or desirable microorganisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Significance of microbial biofilms in food industry: a review.

Biofilms have been of considerable interest in the context of food hygiene. Of special significance is the ability of microorganisms to attach and grow on food and food-contact surfaces under favourable conditions. Biofilm formation is a dynamic process and different mechanisms are involved in their attachment and growth. Extracellular polymeric substances play an important role in the attachme...

متن کامل

Sporulation of Bacillus spp. within biofilms: a potential source of contamination in food processing environments.

Bacillus strains are often isolated from biofilms in the food industries. Previous works have demonstrated that sporulation could occur in biofilms, suggesting that biofilms would be a significant source of food contamination with spores. In this study, we investigated the properties of mono-species and mixed Bacillus biofilms and the ability of Bacillus strains to sporulate inside biofilms. Ba...

متن کامل

Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli

Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods:  The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...

متن کامل

Prevalence, Antimicrobial Resistance, and Molecular Characterization of Escherichia coli Isolated from Food Contact Surfaces in Seafood Pre-Processing Plants (India)

Background: The survival of pathogens in biofilms poses a threat to food safety. The aim of this study was to determine prevalence, antimicrobial resistance, and molecular characterization of Escherichia coli strains. Methods: Swab samples (n=144) were collected from biofilm formed on food contact surfaces in seafood pre-processing plant in India. E. coli was isolated and identified using uid ...

متن کامل

Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms.

Detailed knowledge of the developmental process from single cells scattered on a surface to complex multicellular biofilm structures is essential in order to create strategies to control biofilm development. In order to study bacterial migration patterns during Pseudomonas aeruginosa biofilm development, we have performed an investigation with time-lapse confocal laser scanning microscopy of bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016