On Lipschitz Truncations of Sobolev Functions (with Variable Exponent) and Their Selected Applications

نویسندگان

  • Lars Diening
  • Josef Málek
  • Mark Steinhauer
  • L. DIENING
  • J. MÁLEK
  • M. STEINHAUER
چکیده

We study properties of Lipschitz truncations of Sobolev functions with constant and variable exponent. As non-trivial applications we use the Lipschitz truncations to provide a simplified proof of an existence result for incompressible power-law like fluids presented in Frehse, Málek, Steinhauer: SIAM J. Math. Anal., 34, 1064-1083 (2003). We also establish new existence results to a class of incompressible electro-rheological fluids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Picone's identity for the $mathcal{A}_{p(x)}$-Laplacian and its applications

‎We present a Picone's identity for the‎ ‎$mathcal{A}_{p(x)}$-Laplacian‎, ‎which is an extension of the classic‎ ‎identity for the ordinary Laplace‎. ‎Also‎, ‎some applications of our‎ ‎results in Sobolev spaces with variable exponent are suggested.

متن کامل

The fibering map approach to a quasilinear degenerate p(x)-Laplacian equation

‎By considering a degenerate $p(x)-$Laplacian equation‎, ‎a generalized compact embedding in weighted variable‎ ‎exponent Sobolev space is presented‎. ‎Multiplicity of positive solutions are discussed by applying fibering map approach for the‎ ‎corresponding Nehari manifold‎. 

متن کامل

On a p(x)-Kirchho equation via variational methods

This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.

متن کامل

Stochastic Approximation of Functions and Applications

We survey recent results on the approximation of functions from Sobolev spaces by stochastic linear algorithms based on function values. The error is measured in various Sobolev norms, including positive and negative degree of smoothness. We also prove some new, related results concerning integration over Lipschitz domains, integration with variable weights, and study tractability of generalize...

متن کامل

Wolff Potential Estimates for Elliptic Equations with Nonstandard Growth and Applications

We study superharmonic functions related to elliptic equations with structural conditions involving a variable growth exponent. We establish pointwise estimates for such functions in terms of a Wolff type potential. We apply these estimates to prove a variable exponent version of the Hedberg–Wolff theorem on the dual of Sobolev spaces with zero boundary values.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007