On Lipschitz Truncations of Sobolev Functions (with Variable Exponent) and Their Selected Applications
نویسندگان
چکیده
We study properties of Lipschitz truncations of Sobolev functions with constant and variable exponent. As non-trivial applications we use the Lipschitz truncations to provide a simplified proof of an existence result for incompressible power-law like fluids presented in Frehse, Málek, Steinhauer: SIAM J. Math. Anal., 34, 1064-1083 (2003). We also establish new existence results to a class of incompressible electro-rheological fluids.
منابع مشابه
On a Picone's identity for the $mathcal{A}_{p(x)}$-Laplacian and its applications
We present a Picone's identity for the $mathcal{A}_{p(x)}$-Laplacian, which is an extension of the classic identity for the ordinary Laplace. Also, some applications of our results in Sobolev spaces with variable exponent are suggested.
متن کاملThe fibering map approach to a quasilinear degenerate p(x)-Laplacian equation
By considering a degenerate $p(x)-$Laplacian equation, a generalized compact embedding in weighted variable exponent Sobolev space is presented. Multiplicity of positive solutions are discussed by applying fibering map approach for the corresponding Nehari manifold.
متن کاملOn a p(x)-Kirchho equation via variational methods
This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.
متن کاملStochastic Approximation of Functions and Applications
We survey recent results on the approximation of functions from Sobolev spaces by stochastic linear algorithms based on function values. The error is measured in various Sobolev norms, including positive and negative degree of smoothness. We also prove some new, related results concerning integration over Lipschitz domains, integration with variable weights, and study tractability of generalize...
متن کاملWolff Potential Estimates for Elliptic Equations with Nonstandard Growth and Applications
We study superharmonic functions related to elliptic equations with structural conditions involving a variable growth exponent. We establish pointwise estimates for such functions in terms of a Wolff type potential. We apply these estimates to prove a variable exponent version of the Hedberg–Wolff theorem on the dual of Sobolev spaces with zero boundary values.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007