Invariants of the vacuum module associated with the Lie superalgebra gl(1|1)

نویسنده

  • E. E. Mukhin
چکیده

We describe the algebra of invariants of the vacuum module associated with an affinization of the Lie superalgebra gl(1|1). We give a formula for its Hilbert–Poincaré series in a fermionic (cancellation-free) form which turns out to coincide with the generating function of the plane partitions over the (1, 1)-hook. Our arguments are based on a super version of the Beilinson–Drinfeld–Räıs–Tauvel theorem which we prove by producing an explicit basis of invariants of the symmetric algebra of polynomial currents associated with gl(1|1). We identify the invariants with affine supersymmetric polynomials via a version of the Chevalley theorem. School of Mathematics and Statistics University of Sydney, NSW 2006, Australia [email protected] Department of Mathematical Sciences Indiana University – Purdue University Indianapolis 402 North Blackford St, Indianapolis, IN 46202-3216, USA [email protected] 1 This is the author's manuscript of the article published in final edited form as: Molev, A. I., & Mukhin, E. E. (2015). Invariants of the vacuum module associated with the Lie superalgebra gl(1|1). Journal of Physics A: Mathematical and Theoretical, 48(31), 314001. http://doi.org/10.1088/1751-8113/48/31/314001 Dedicated to Rodney Baxter on his 75th birthday

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On generalized reduced representations of restricted Lie superalgebras in prime characteristic

Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...

متن کامل

On the Ghost Centre of Lie Superalgebras

We define a notion of ghost centre of a Lie superalgebra g = g0 ⊕ g1 which is a sum of invariants with respect to the usual adjoint action (centre) and invariants with respect to a twisted adjoint action (“anticentre”). We calculate the anticentre in the case when the top external degree of g1 is a trivial g0-module. We describe the Harish-Chandra projection of the ghost centre for basic classi...

متن کامل

An Analog of the Classical Invariant Theory for Lie Superlagebras

Let V be a finite-dimensional superspace over C and g a simple (or a “close” to simple) matrix Lie superalgebra, i.e., a Lie subsuperalgebra in gl(V ). Under the classical invariant theory for g we mean the description of g-invariant elements of the algebra A p,q k,l = S . (V k ⊕Π(V ) ⊕ V ∗p ⊕Π(V )). We give such description for gl(V ), sl(V ) and osp(V ) and their “odd” analogs: q(V ), sq(V );...

متن کامل

1 S ep 2 00 6 MULTIVARIABLE LINK INVARIANTS ARISING FROM LIE SUPERALGEBRAS OF TYPE I

This paper generalize [7]: We construct new links in-variants from g, a type I basic classical Lie superalgebra. The construction uses the existence of an unexpected replacement of the vanishing quantum dimension of typical module. Using this, we get a multivariable link invariant associated to any one parameter family of irreducible g-modules.

متن کامل

1 On the eigenvalue problem for arbitrary odd elements of the Lie superalgebra gl(1|n) and applications

On the eigenvalue problem for arbitrary odd elements of the Lie superalgebra gl(1|n) and applications Abstract In a Wigner quantum mechanical model, with a solution in terms of the Lie superalgebra gl(1|n), one is faced with determining the eigenvalues and eigenvectors for an arbitrary self-adjoint odd element of gl(1|n) in any unitary irreducible representation W. We show that the eigenvalue p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015