Detection and Classification of Network Intrusions using Hidden
نویسندگان
چکیده
This paper demonstrates that it is possible to model attacks with a low number of states and classify them using Hidden Markov Models with very low False Alarm rate and very few False Negatives. We also show that the models developed can be used for both detection and classification. We put emphasis on detection and classification of network intrusions and attacks using Hidden Markov Models and training on anomalous sequences. We test several algorithms, apply different rules for classification and evaluate the relative performance of these. Several of the attack examples presented exploit buffer overflow vulnerabilities, due to availability of data for such attacks. We emphasize that the purpose of our algorithms is not only the detection and classification of buffer overflows; they are designed for detecting and classifying a broad range of attacks.
منابع مشابه
Detection and Classification of Network Intrusions Using Hidden Markov Models 1
This paper demonstrates that it is possible to model attacks with a low number of states and classify them using Hidden Markov Models with very low False Alarm rate and very few False Negatives. We also show that the models developed can be used for both detection and classification. We put emphasis on detection and classification of network intrusions and attacks using Hidden Markov Models and...
متن کاملHybrid System of Learning Vector Quantization and Enhanced Resilient Backpropagation Artificial Neural Network for Intrusion Classification
Network-based computer systems play increasingly vital roles in modern society; they have become the target of intrusions by our enemies and criminals. Intrusion detection system attempts to detect computer attacks by examining various data records observed in processes on the network. This paper presents a hybrid intrusion detection system models, using Learning Vector Quantization and an enha...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملEvaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003