Convergence of weighted polynomial multiple ergodic averages

نویسندگان

  • Qing Chu
  • QING CHU
چکیده

In this article we study weighted polynomial multiple ergodic averages. A sequence of weights is called universally good if any polynomial multiple ergodic average with this sequence of weights converges in L. We find a necessary condition and show that for any bounded measurable function φ on an ergodic system, the sequence φ(Tnx) is universally good for almost every x. The linear case was covered by Host and Kra.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Ergodic Theorems Along Subsequences of Density Zero

We consider subsequence versions of weighted ergodic theorems, and show that for a wide class of subsequences along which a.e. convergence of Cesaro averages has been established, we also have a.e. convergence for the subsequence Cesaro weighted averages, when the weights are obtained from uniform sequences produced by a connected apparatus.

متن کامل

Convergence of Polynomial Ergodic Averages of Several Variables for Some Commuting Transformations

Furstenberg’s theorem corresponds to the case that pij(n) = n for i = j, pij(n) = 0 for i 6= j and each Ti = T i 1. In this linear case, Host and Kra [HK1] showed that the lim inf is in fact a limit. Host and Kra [HK2] and Leibman [Le2] proved convergence in the polynomial case assuming all Ti = T1. It is natural to ask whether the general commuting averages for polynomials in Theorem 1.1 conve...

متن کامل

Convergence of Multiple Ergodic Averages for Some Commuting Transformations

We prove the L convergence for the linear multiple ergodic averages of commuting transformations T1, . . . , Tl, assuming that each map Ti and each pair TiT −1 j is ergodic for i 6= j. The limiting behavior of such averages is controlled by a particular factor, which is an inverse limit of nilsystems. As a corollary we show that the limiting behavior of linear multiple ergodic averages is the s...

متن کامل

Quasiperiodicity and Chaos Chaos and Quasiperiodicity

Title of dissertation: QUASIPERIODICITY AND CHAOS Suddhasattwa Das, Doctor of Philosophy, 2015 Dissertation directed by: Professor James A. Yorke Department of Mathematics In this work, we investigate a property called “multi-chaos” is which a chaotic set has densely many hyperbolic periodic points of unstable dimension k embedded in it, for at least 2 different values of k. We construct a fami...

متن کامل

Convergence of multiple ergodic averages along cubes for several commuting transformations

In this paper, we give the convergence result of multiple ergodic averages along cubes for several commuting transformations, and the correspondant combinatorial results. The main tools we use are the seminorms and “magic” extension introduced by Host recently.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008