Capsule-Targeting Depolymerase, Derived from Klebsiella KP36 Phage, as a Tool for the Development of Anti-Virulent Strategy
نویسندگان
چکیده
The rise of antibiotic-resistant Klebsiella pneumoniae, a leading nosocomial pathogen, prompts the need for alternative therapies. We have identified and characterized a novel depolymerase enzyme encoded by Klebsiella phage KP36 (depoKP36), from the Siphoviridae family. To gain insights into the catalytic and structural features of depoKP36, we have recombinantly produced this protein of 93.4 kDa and showed that it is able to hydrolyze a crude exopolysaccharide of a K. pneumoniae host. Using in vitro and in vivo assays, we found that depoKP36 was also effective against a native capsule of clinical K. pneumoniae strains, representing the K63 type, and significantly inhibited Klebsiella-induced mortality of Galleria mellonella larvae in a time-dependent manner. DepoKP36 did not affect the antibiotic susceptibility of Klebsiella strains. The activity of this enzyme was retained in a broad range of pH values (4.0-7.0) and temperatures (up to 45 °C). Consistently, the circular dichroism (CD) spectroscopy revealed a highly stability with melting transition temperature (Tm) = 65 °C. In contrast to other phage tailspike proteins, this enzyme was susceptible to sodium dodecyl sulfate (SDS) denaturation and proteolytic cleavage. The structural studies in solution showed a trimeric arrangement with a high β-sheet content. Our findings identify depoKP36 as a suitable candidate for the development of new treatments for K. pneumoniae infections.
منابع مشابه
Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment.
BACKGROUND Klebsiella pneumoniae causing community-acquired pyogenic liver abscess complicated with metastatic meningitis and endophthalmitis has emerged recently, most frequently associated with the K1 capsular type. METHODS A bacteriophage (NTUH-K2044-K1-1) that infects K. pneumoniae NTUH-K2044 (capsular type K1) was isolated and characterized. RESULTS The phage infected all K1 strains, a...
متن کاملDepolymerase improves gentamicin efficacy during Klebsiella pneumoniae induced murine infection
BACKGROUND Presence of capsule enhances the virulence of bacteria that cause pneumonia, meningitis, cystic fibrosis, dental caries, periodontitis. Capsule is an important virulence factor for Klebsiella pneumoniae and infections due to this pathogen have been associated with high mortality rates. In the present study, use of an Aeromonas punctata derived capsule depolymerase against K. pneumoni...
متن کاملIsolation of a Bacteriophage Specific for a New Capsular Type of Klebsiella pneumoniae and Characterization of Its Polysaccharide Depolymerase
BACKGROUND Klebsiella pneumoniae is one of the major pathogens causing hospital-acquired multidrug-resistant infections. The capsular polysaccharide (CPS) is an important virulence factor of K. pneumoniae. With 78 capsular types discovered thus far, an association between capsular type and the pathogenicity of K. pneumoniae has been observed. METHODOLOGY/PRINCIPAL FINDINGS To investigate an i...
متن کاملExtensive Capsule Locus Variation and Large-Scale Genomic Recombination within the Klebsiella pneumoniae Clonal Group 258
Klebsiella pneumoniae clonal group (CG) 258, comprising sequence types (STs) 258, 11, and closely related variants, is associated with dissemination of the K. pneumoniae carbapenemase (KPC). Hospital outbreaks of KPC CG258 infections have been observed globally and are very difficult to treat. As a consequence, there is renewed interest in alternative infection control measures such as vaccines...
متن کاملAnti-MrkA Monoclonal Antibodies Reveal Distinct Structural and Antigenic Features of MrkA
Antibody therapy against antibiotics resistant Klebsiella pneumoniae infections represents a promising strategy, the success of which depends critically on the ability to identify appropriate antibody targets. Using a target-agnostic strategy, we recently discovered MrkA as a potential antibody target and vaccine antigen. Interestingly, the anti-MrkA monoclonal antibodies isolated through phage...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2016