Power generating reflective-type liquid crystal displays using a reflective polariser and a polymer solar cell
نویسندگان
چکیده
We herein report the results of a study of a power generating reflective-type liquid crystal display (LCD), composed of a 90° twisted nematic (TN) LC cell attached to the top of a light-absorbing polymer solar cell (PSC), i.e., a Solar-LCD. The PSC consisted of a polymer bulk-heterojunction photovoltaic (PV) layer of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] and [6,6]-phenyl C71 butyric acid methyl ester (PCDTBT:PCBM70), and showed a high power conversion efficiency of about 5%. In order to improve the visibility of the Solar-LCD, between the TN-LC and the PV cells we inserted a reflective polariser of a giant birefringent optical (GBO) film. The reflectivity from the Solar-LCD was observed to be considerably increased by more than 13-15% under illumination by visible light. The Solar-LCD also exhibited a significantly improved contrast ratio of more than 17-19. We believe there is a clear case for using such Solar-LCDs in new power-generating reflective-type displays; taken as a whole these results also demonstrate the possibility of their application in a number of energy-harvesting opto-electrical display devices.
منابع مشابه
Controllable Propulsion by Light: Steering a Solar Sail via Tunable Radiation Pressure
(1 of 6) 1600668 polymer dispersed liquid crystal (PDLC) films stand out due to their ability to be switched from an opaque to a transparent state with the applied external electric field without the need for polarizers. Since its discovery,[13] researchers have extensively explored the potential applications of PDLCs in the areas of flat panel displays,[14] smart windows,[15,16] microlens,[17]...
متن کاملMeasurement of reflective liquid crystal displays
Cell gap thickness is one of the most important design parameters for liquid crystal displays ~LCD!. Existing measurement methods only apply to transmittive LC cells. These methods are obviously unsuitable for measuring the cell gaps of reflective LCDs with internal reflectors. This kind of LCD includes single polarizer reflective displays and liquid crystal on silicon displays. The objective o...
متن کاملStudying a New Infrared Reflective Polymer Coating
Although, that the solar energy is important for life continuity, there is need to protect large buildings from these radiations in summer and if the buildings are permitted to take these radiations, the cost of cooling will be too much. One of the most effective methods used to solve this problem is to coat buildings with specific pigments that reflect the solar infrared radiation. This wo...
متن کاملImprovement of light harvesting by inserting an optical spacer (ZnO) in polymer bulk heterojunction solar cells: A theoretical and experimental study
By introducing a thin ZnO layer as an optical spacer, we have demonstrated that inserting this layer between an active layer and a reflective electrode results in a re-distribution of the optical electric field inside bulk heterojunction solar cells. A theoretical analysis by optical modeling showed that the thin ZnO layer could shift the position of the maximum of the electric field into the a...
متن کاملWide-view and sunlight readable transflective liquid-crystal display for mobile applications.
A wide-view single cell gap transflective liquid-crystal display (TR-LCD) using the fringe field switching effect is proposed by incorporating a quarter-wave in-cell-retarder below the liquid-crystal (LC) cell in the reflective part. By optimizing the angle between the electrode stripes and the LC rubbing direction in the transmissive and the reflective regions, this TR-LCD exhibits a high opti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015