Galois geometries and coding theory
نویسندگان
چکیده
Galois geometries and coding theory are two research areas which have been interacting with each other for many decades. From the early examples linking linear MDS codes with arcs in finite projective spaces, linear codes meeting the Griesmer bound with minihypers, covering radius with saturating sets, links have evolved to functional codes, generalized projective Reed–Muller codes, and even further to LDPC codes, random network codes, and distributed storage. This article reviews briefly the known links, and then focuses on new links and new directions. We present new results and open problems to stimulate the research on Galois geometries, coding theory, and on their continuously developing and increasing interactions.
منابع مشابه
A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملAn Octahedral Galois-Reflection Tower of Picard Modular Congruence Subgroups
Between tradition (Hilbert’s 12-th Problem) and actual challenges (coding theory) we attack infinite two-dimensional Galois theory. From a number theoretic point of view we work over Q(x). Geometrically, one has to do with towers of Shimura surfaces and Shimura curves on them. We construct and investigate a tower of rational Picard modular surfaces along a Galois group isomorphic to the (double...
متن کاملDeformation of Outer Representations of Galois Group
To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...
متن کاملLinear codes meeting the Griesmer bound, minihypers, and geometric applications
Coding theory and Galois geometries are two research areas which greatly influence each other. In this talk, we focus on the link between linear codes meeting the Griesmer bound and minihypers in finite projective spaces. Minihypers are particular (multiple) blocking sets. We present characterization results on minihypers, leading to equivalent characterization results on linear codes meeting t...
متن کاملThe Fourier Convolution Theorem over Finite Fields: Extensions of Its Application to Error Control Coding
Linear spectral transform techniques such as the discrete Fourier transform and wavelet analysis over real and complex fields have been routinely applied in the literature (Burrus et al. (1998); Strang & Nuygen (1996)). Furthermore, extensions of these techniques over finite fields (Blahut & Burrus (1991); Caire et al. (1993)) have led to applications in the areas of information theory and erro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Des. Codes Cryptography
دوره 78 شماره
صفحات -
تاریخ انتشار 2016