A revised Moore bound for mixed graphs
نویسندگان
چکیده
The degree-diameter problem seeks to find the maximum possible order of a graph with a given (maximum) degree and diameter. It is known that graphs attaining the maximum possible value (the Moore bound) are extremely rare, but much activity is focussed on finding new examples of graphs or families of graph with orders approaching the bound as closely as possible. There has been recent interest in this problem as it applies to mixed graphs, in which we allow some of the edges to be undirected and some directed. A 2008 paper of Nguyen and Miller derived an upper bound on the possible number of vertices of such graphs. We show that for diameters larger than three, this bound can be reduced and we present a corrected Moore bound for mixed graphs, valid for all diameters and for all combinations of undirected and directed degrees.
منابع مشابه
On Mixed Almost Moore Graphs of Diameter Two
Mixed almost Moore graphs appear in the context of the Degree/Diameter problem as a class of extremal mixed graphs, in the sense that their order is one less than the Moore bound for mixed graphs. The problem of their existence has been considered before for directed graphs and undirected ones, but not for the mixed case, which is a kind of generalization. In this paper we give some necessary c...
متن کاملApproaching the mixed Moore bound for diameter two by Cayley graphs
In a mixed (Δ, d)-regular graph, every vertex is incident with Δ ≥ 1 undirected edges and there are d ≥ 1 directed edges entering and leaving each vertex. If such a mixed graph has diameter 2, then its order cannot exceed (Δ+ d) + d+1. This quantity generalizes the Moore bounds for diameter 2 in the case of undirected graphs (when d = 0) and digraphs (when Δ = 0). For every d such that d − 1 is...
متن کاملA Moore-like bound for mixed abelian Cayley graphs
We give an upper bound for the number of vertices in mixed abelian Cayley graphs with given degree and diameter.
متن کاملA construction of dense mixed graphs of diameter 2
A mixed graph is said to be dense, if its order is close to the Moore bound and it is optimal if there is not a mixed graph with the same parameters and bigger order. We give a construction that provides dense mixed graphs of undirected degree q, directed degree q−1 2 and order 2q 2, for q being an odd prime power. Since the Moore bound for a mixed graph with these parameters is equal to 9q 2−4...
متن کاملOn bipartite mixed graphs
Mixed graphs can be seen as digraphs that have both arcs and edges (or digons, that is, two opposite arcs). In this paper, we consider the case where such graphs are bipartite. As main results, we show that in this context the Moore-like bound is attained in the case of diameter k = 3, and that bipartite mixed graphs of diameter k ≥ 4 do not exist.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 339 شماره
صفحات -
تاریخ انتشار 2016