Quantum chromatic number
نویسنده
چکیده
This report gather some notable results found in [SS12], giving also details on some foundation results presented in [CMN+07]. The results covered in Section 2 are answers given in [SS12] to questions of the article [CMN+07]. Graph parameters are studied a lot as they are a way to highlight a general structure from a graph. In that sense, the chromatic number is studied a lot as it shows the multipartitions. The chromatic number can be seen as the smallest number needed to color a graph, with respecting the condition that two adjacent vertices must not have the same color. But it can also be studied with the following protocol. We consider an integer c and a graph G. We denote [c] = {1, . . . , n}. A referee gives to Alice and Bob two vertices that are either the same one, or belong to one edge. Alice and Bob answer two colors in [c] that should be the same if they were given the same vertex, and different in the other case. The chromatic number coincide with the smallest c for which Alice and Bob have a probability 1 winning strategy.
منابع مشابه
The locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملThe distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملBounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization
In this paper we study bipartite quantum correlations using techniques from tracial polynomial optimization. We construct a hierarchy of semidefinite programming lower bounds on the minimal entanglement dimension of a bipartite correlation. This hierarchy converges to a new parameter: the minimal average entanglement dimension, which measures the amount of entanglement needed to reproduce a qua...
متن کاملComputing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers
The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...
متن کاملTutte Chromatic Identities from the Temperley-lieb Algebra
One remarkable feature of the chromatic polynomial χ(Q) is Tutte’s golden identity. This relates χ(φ+ 2) for any triangulation of the sphere to (χ(φ+ 1)) for the same graph, where φ denotes the golden ratio. We explain how this result fits in the framework of quantum topology and give a proof using the chromatic algebra, whose Markov trace is the chromatic polynomial of an associated graph. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017