On almost universal ternary inhomogeneous quadratic polynomials
نویسندگان
چکیده
A fundamental question in the study of integral quadratic forms is the representation problem which asks for an effective determination of the set of integers represented by a given quadratic form. A related and equally interesting problem is the representation of integers by inhomogeneous quadratic polynomials. An inhomogeneous quadratic polynomial is a sum of a quadratic form and a linear form; it is called almost universal if it represents all but finitely many positive integers. This thesis gives a characterization of almost universal ternary inhomogeneous quadratic polynomials, H(x) whose quadratic parts are positive definite and anisotropic at exactly one prime. Imposing some other mild arithmetic conditions, we utilize the theory of quadratic lattices and primitive spinor exceptions to give a list of explicit conditions, under which H(x) is almost universal. In the final chapter, we will give some examples of almost universal quadratic polynomials given by mixed sums of polygonal numbers.
منابع مشابه
Finiteness results for regular ternary quadratic polynomials
In 1924, Helmut Hasse established a local-to-global principle for representations of rational quadratic forms. Unfortunately, an analogous local-to-global principle does not hold for representations over the integers. A quadratic polynomial is called regular if such a principle exists; that is, if it represents all the integers which are represented locally by the polynomial itself over Zp for ...
متن کاملShort proofs of the universality of certain diagonal quadratic forms
In a paper of Kim, Chan, and Rhagavan, the universal ternary classical quadratic forms over quadratic fields of positive discriminant were discovered. Here a proof of the universality of some of these quadratic forms is given using a technique of Liouville. Another quadratic form over the field of discriminant 8 is shown universal by a different elementary approach. Mathematics Subject Classifi...
متن کامل2-universal Hermitian Lattices over Imaginary Quadratic Fields
We call a positive definite integral quadratic form universal if it represents all positive integers. Then Lagrange’s Four Square Theorem means that the sum of four squares is universal. In 1930, Mordell [M] generalized this notion to a 2-universal quadratic form: a positive definite integral quadratic form that represents all binary positive definite integral quadratic forms, and showed that t...
متن کاملHeight Bounds on Zeros of Quadratic Forms Over Q-bar
In this paper we establish three results on small-height zeros of quadratic polynomials over Q. For a single quadratic form in N ≥ 2 variables on a subspace of Q , we prove an upper bound on the height of a smallest nontrivial zero outside of an algebraic set under the assumption that such a zero exists. For a system of k quadratic forms on an L-dimensional subspace of Q , N ≥ L ≥ k(k+1) 2 + 1,...
متن کاملUniversal Tutte and Reduced Polynomials
We study some combinatorial and algebraic properties of certain quadratic algebras related with dynamical classical and classical Yang–Baxter equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013