Optimization of High-Dimensional Functions through Hypercube Evaluation
نویسندگان
چکیده
A novel learning algorithm for solving global numerical optimization problems is proposed. The proposed learning algorithm is intense stochastic search method which is based on evaluation and optimization of a hypercube and is called the hypercube optimization (HO) algorithm. The HO algorithm comprises the initialization and evaluation process, displacement-shrink process, and searching space process. The initialization and evaluation process initializes initial solution and evaluates the solutions in given hypercube. The displacement-shrink process determines displacement and evaluates objective functions using new points, and the search area process determines next hypercube using certain rules and evaluates the new solutions. The algorithms for these processes have been designed and presented in the paper. The designed HO algorithm is tested on specific benchmark functions. The simulations of HO algorithm have been performed for optimization of functions of 1000-, 5000-, or even 10000 dimensions. The comparative simulation results with other approaches demonstrate that the proposed algorithm is a potential candidate for optimization of both low and high dimensional functions.
منابع مشابه
Three Dimensional Hypercube Model and Mechanism: Optimizing the Risk on Real Time Operating System
The automated access control mechanism afforded to an automated system control in order to attain the maximum objectives of preserving the confidentiality, integrity, authentication & high availability of information system resources. The risk optimization is the process of identifying vulnerabilities, risk, uncertainties and threats to operating system resources to achieving the maximum busine...
متن کاملHigh-performance three-dimensional maneuvers control in the area of spacecraft
Contemporary research is improving techniques to maneuvers control in the area of spacecraft. In the aspect of further development of investigations, a high-performance strategy of maneuvers control is proposed in the present research to be applicable to deal with a class of the aforementioned spacecrafts. In a word, the main subject behind the research is to realize a high-performance three-di...
متن کاملSolving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions
In this paper, the two-dimensional triangular orthogonal functions (2D-TFs) are applied for solving a class of nonlinear two-dimensional Volterra integral equations. 2D-TFs method transforms these integral equations into a system of linear algebraic equations. The high accuracy of this method is verified through a numerical example and comparison of the results with the other numerical methods.
متن کاملOn Simulated Annealing Dedicated to Maximin Latin Hypercube Designs
The goal of our research was to enhance local search heuristics used to construct Latin Hypercube Designs. First, we introduce the 1D-move perturbation to improve the space exploration performed by these algorithms. Second, we propose a new evaluation function ψp,σ specifically targeting the Maximin criterion. Exhaustive series of experiments with Simulated Annealing, which we used as a typical...
متن کاملTHE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN OPTIMAL DESIGN OF TRUSSES USING METAHEURISTIC ALGORITHMS
Although Genetic algorithm (GA), Ant colony (AC) and Particle swarm optimization algorithm (PSO) have already been extended to various types of engineering problems, the effects of initial sampling beside constraints in the efficiency of algorithms, is still an interesting field. In this paper we show that, initial sampling with a special series of constraints play an important role in the conv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015