Extraction of Airways with Probabilistic State-Space Models and Bayesian Smoothing
نویسندگان
چکیده
Segmenting tree structures is common in several image processing applications. In medical image analysis, reliable segmentations of airways, vessels, neurons and other tree structures can enable important clinical applications. We present a framework for tracking tree structures comprising of elongated branches using probabilistic state-space models and Bayesian smoothing. Unlike most existing methods that proceed with sequential tracking of branches, we present an exploratory method, that is less sensitive to local anomalies in the data due to acquisition noise and/or interfering structures. The evolution of individual branches is modelled using a process model and the observed data is incorporated into the update step of the Bayesian smoother using a measurement model that is based on a multi-scale blob detector. Bayesian smoothing is performed using the RTS (Rauch-Tung-Striebel) smoother, which provides Gaussian density estimates of branch states at each tracking step. We select likely branch seed points automatically based on the response of the blob detection and track from all such seed points using the RTS smoother. We use covariance of the marginal posterior density estimated for each branch to discriminate false positive and true positive branches. The method is evaluated on 3D chest CT scans to track airways. We show that the presented method results in additional branches compared to a baseline method based on region growing on probability images.
منابع مشابه
AN ADDITIVE MODEL FOR SPATIO-TEMPORAL SMOOTHING OF CANCER MORTALITY RATES
In this paper, a Bayesian hierarchical model is used to anaylze the female breast cancer mortality rates for the State of Missouri from 1969 through 2001. The logit transformations of the mortality rates are assumed to be linear over the time with additive spatial and age effects as intercepts and slopes. Objective priors of the hierarchical model are explored. The Bayesian estimates are quite ...
متن کاملAssessment of Mortgage Default Risk via Bayesian State Space Models
Managing risk at the aggregate level is crucial for banks and financial institutions as required by the Basel III framework. In this paper, we introduce discrete time Bayesian state space models with Poisson measurements to model aggregate mortgage default rate. We discuss parameter updating, filtering, smoothing, forecasting and estimation using Markov chain Monte Carlo methods. In addition, w...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملPropagation Algorithms for Variational Bayesian Learning
Variational approximations are becoming a widespread tool for Bayesian learning of graphical models. We provide some theoretical results for the variational updates in a very general family of conjugate-exponential graphical models. We show how the belief propagation and the junction tree algorithms can be used in the inference step of variational Bayesian learning. Applying these results to th...
متن کاملFast Variational Bayesian Linear State-Space Model
This paper presents a fast variational Bayesian method for linear state-space models. The standard variational Bayesian expectationmaximization (VB-EM) algorithm is improved by a parameter expansion which optimizes the rotation of the latent space. With this approach, the inference is orders of magnitude faster than the standard method. The speed of the proposed method is demonstrated on an art...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017