The Fourier Transform on Symmetric Spaces and Applications 1. the Fourier Transform

نویسنده

  • Sigurdur Helgason
چکیده

The symmetric spaces the title refers to are the spaces X = G=K where G is a connected semisimple Lie group with nite center and K is a maximal compact subgroup. The Fourier transform on X is deened by means of the Iwasawa decomposition G = NAK of G where N is nilpotent and A abelian. Let g; n; a; k denote the corresponding Lie algebras. We also need the group M = K A ; the centralizer of A in K: To deene the Fourier transform we write for g 2 G g = n exp A(g)k; n 2 N; A(g) 2 a; k 2 K and deene A : G=K K=M ?! a by A(gK; kM) = A(k ?1 g): If f is a function on X its Fourier transform ~ f is deened in 3a] by (1) ~ f(; b) = Z X f(x)e (?ii+)(A(x;b)) dx; b 2 B; for all (; b) 2 a c B for which the integral exists. Here is half the sum of the restricted roots. Deenition (1) is the analog of the Euclidean Fourier transform (2)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalence of K-functionals and modulus of smoothness for fourier transform

In Hilbert space L2(Rn), we prove the equivalence between the mod-ulus of smoothness and the K-functionals constructed by the Sobolev space cor-responding to the Fourier transform. For this purpose, Using a spherical meanoperator.

متن کامل

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

The Computation of Fourier Transforms on the Symmetric Group

This paper introducesnew techniques for the eecient computationof Fourier transforms on symmetric groups and their homogeneous spaces. We replace the matrix multiplications in Clausen's algorithm with sums indexed by combinatorial objects that generalize Young tableaux, and write the result in a form similar to Horner's rule. The algorithm we obtain computes the Fourier transform of a function ...

متن کامل

Paley-wiener Theorem for Line Bundles over Compact Symmetric Spaces

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2: Riemannian Symmetric Spaces and Related Structure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Beurling’s Theorem for Riemannian Symmetric Spaces Ii

We prove two versions of Beurling’s theorem for Riemannian symmetric spaces of arbitrary rank. One of them uses the group Fourier transform and the other uses the Helgason Fourier transform. This is the master theorem in the quantitative uncertainty principle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993