Unusual transport properties in carbon based nanoscaled materials: nanotubes and graphene

نویسندگان

  • M. S. Purewal
  • Y. Zhang
  • P. Kim
چکیده

The massless Dirac particle moving at the speed of light has been a fascinating subject in relativistic quantum physics. Nanoscale graphitic materials, such as carbon nanotubes and graphene, now provide us with an opportunity to investigate such exotic effects in low-energy condensed matter systems. The unique electronic band structure of graphene lattice provides a linear dispersion relation where the Fermi velocity replaces the role of the speed of light in the usual Dirac Fermion spectrum. Recent experimental studies reveal that such unconventional electronic structure in graphitic carbon leads to unique electronic transport phenomena in 1-dimensional carbon nanotubes and 2-dimensional graphene. Combined with semiconductor device fabrication techniques and the development of new methods of nanoscaled material synthesis/manipulation enables us to investigate mesoscopic transport phenomena in these materials. The exotic quantum transport behavior discovered in these materials, such as room temperature ballistic transport, unusual half-integer quantum Hall effect, and a non-zero Berrys phase in magneto-oscillations will be discussed in the connection to Dirac Fermion description in graphitic systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic properties and quantum transport in Graphene-based nanostructures

Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) represent a novel class of lowdimensional materials. All these graphene-based nanostructures are expected to display the extraordinary electronic, thermal and mechanical properties of graphene and are thus promising candidates for a wide range of nanoscience and nanotechnology applications. In this paper, the electronic and quantum transpo...

متن کامل

Thermal properties of graphene and nanostructured carbon materials.

Recent years have seen a rapid growth of interest by the scientific and engineering communities in the thermal properties of materials. Heat removal has become a crucial issue for continuing progress in the electronic industry, and thermal conduction in low-dimensional structures has revealed truly intriguing features. Carbon allotropes and their derivatives occupy a unique place in terms of th...

متن کامل

Graphene: Carbon Based Nanomaterial for Dentistry

The new revolution in dental materials is due to use of nanomaterials in dentistry. Graphene is one of the carbon nanoallotrope that has the potential to enhance properties of materials used in dentistry. The use of this 2D crystal is dentistry is virtue to its typical properties that provides improved performance, extended functionality in materials. In this paper, a review is done to study 3D...

متن کامل

Functionalized carbon nanotubes and graphene-based materials for energy storage.

Carbon nanotubes (CNTs) or graphene-based nanomaterials functionalized by different strategies have attracted great attention for energy storage due to their large specific surface area, high conductivity, and good mechanical properties. This feature article presents an overview of the recent progress in the functionalization of CNTs and graphene-based materials for energy storage applications ...

متن کامل

Raman spectroscopy of carbon nanotubes pdf

The vibrational properties of single-walled carbon nanotubes reflect the. A common characteristic of the Raman spectra in nanotubes and graphite is the.Resonance Raman spectroscopymicroscopy was used to study individualized single-walled carbon nanotubes. SWNTs both in aqueous suspensions as well.The use of Raman spectroscopy to reveal the remarkable structure and the unusual electronic and. Do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006