Forecasting Association Rules Using Existing Data Sets

نویسندگان

  • Sam Yuan Sung
  • Zhao Li
  • Chew Lim Tan
  • Peter A. Ng
چکیده

An important issue that needs to be addressed when using data mining tools is the validity of the rules outside of the data set from which they are generated. Rules are typically derived from the patterns in a particular data set. When a new situation occurs, the change in the set of rules obtained from the new data set could be significant. In this paper, we provide a novel model for understanding how the differences between two situations affect the changes of the rules, based on the concept of fine partitioned groups that we call caucuses. Using this model, we provide a simple technique called Combination Data Set, to get a good estimate of the set of rules for a new situation. Our approach works independently of the core mining process and it can be easily implemented with all variations of rule mining techniques. Through experiments with real-life and synthetic data sets, we show the effectiveness of our technique in finding the correct set of rules under different situations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)

In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...

متن کامل

Applying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures

Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...

متن کامل

Soft set based association rule mining

Association rules, one of the most useful constructs in data mining, can be exerted to capture interesting dependencies between variables in large datasets. Herawan and Deris initiated the investigation of mining association rules from transactional datasets using soft set theory. Unfortunately, some existing concepts in the literature were unable to realize properly Herawan and Deris’s initial...

متن کامل

arulesCBA: Classification for Factor and Transactional Data Sets Using Association Rules

This paper presents an R package, arulesCBA, which uses association rules mined with the apriori algorithm from arules to build a classifier for discrete or transactional data sets. The package also provides an interface to use an association-rule classifier to predict classes for new data entries. The classification algorithm implemented in arulesCBA performs competitively when compared to exi...

متن کامل

Extension of Business Rule Sets Using Data Mining of GUHA Association Rules

The following paper is intended to introduce three suitable ways of using data mining of GUHA association rules in conjunction with existing set of business rules. The integration can be realized using full integration, as black box classification model and also using dynamic integration with data mining system. These ways are illustrated by demo use case based on data from a health insurance c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Knowl. Data Eng.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2003