Near oracle performance and block analysis of signal space greedy methods
نویسندگان
چکیده
Compressive sampling (CoSa) is a new methodology which demonstrates that sparse signals can be recovered from a small number of linear measurements. Greedy algorithms like CoSaMP have been designed for this recovery, and variants of these methods have been adapted to the case where sparsity is with respect to some arbitrary dictionary rather than an orthonormal basis. In this work we present an analysis of the so-called Signal Space CoSaMP method when the measurements are corrupted with mean-zero white Gaussian noise. We establish near-oracle performance for recovery of signals sparse in some arbitrary dictionary. In addition, we analyze the block variant of the method for signals whose supports obey a block structure, extending the method into the model-based compressed sensing framework. Numerical experiments confirm that the block method significantly outperforms the standard method in these settings.
منابع مشابه
RIP-Based Near-Oracle Performance Guarantees for Subspace-Pursuit, CoSaMP, and Iterative Hard-Thresholding
This paper presents an average case denoising performance analysis for the Subspace Pursuit (SP), the CoSaMP and the IHT algorithms. This analysis considers the recovery of a noisy signal, with the assumptions that (i) it is corrupted by an additive random white Gaussian noise; and (ii) it has a Ksparse representation with respect to a known dictionary D. The proposed analysis is based on the R...
متن کاملHaplotype Block Partitioning and tagSNP Selection under the Perfect Phylogeny Model
Single Nucleotide Polymorphisms (SNPs) are the most usual form of polymorphism in human genome.Analyses of genetic variations have revealed that individual genomes share common SNP-haplotypes. Theparticular pattern of these common variations forms a block-like structure on human genome. In this work,we develop a new method based on the Perfect Phylogeny Model to identify haplo...
متن کاملApplication of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation
Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...
متن کاملTruncated Horizon Policy Search: Combining Reinforcement Learning & Imitation Learning
In this paper, we propose to combine imitation and reinforcement learning via the idea of reward shaping using an oracle. We study the effectiveness of the nearoptimal cost-to-go oracle on the planning horizon and demonstrate that the costto-go oracle shortens the learner’s planning horizon as function of its accuracy: a globally optimal oracle can shorten the planning horizon to one, leading t...
متن کاملTruncated Horizon Policy Search: Combining Reinforcement Learning & Imitation Learning
In this paper, we propose to combine imitation and reinforcement learning via the idea of reward shaping using an oracle. We study the effectiveness of the nearoptimal cost-to-go oracle on the planning horizon and demonstrate that the costto-go oracle shortens the learner’s planning horizon as function of its accuracy: a globally optimal oracle can shorten the planning horizon to one, leading t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Approximation Theory
دوره 194 شماره
صفحات -
تاریخ انتشار 2015