Low-Rank Representation of Both Singing Voice and Music Accompaniment Via Learned Dictionaries
نویسنده
چکیده
Recent research work has shown that the magnitude spectrogram of a song can be considered as a superposition of a low-rank component and a sparse component, which appear to correspond to the instrumental part and the vocal part of the song, respectively. Based on this observation, one can separate singing voice from the background music. However, the quality of such separation might be limited, because the vocal part of a song can sometimes be lowrank as well. Therefore, we propose to learn the subspace structures of vocal and instrumental sounds from a collection of clean signals first, and then compute the low-rank representations of both the vocal and instrumental parts of a song based on the learned subspaces. Specifically, we use online dictionary learning to learn the subspaces, and propose a new algorithm called multiple low-rank representation (MLRR) to decompose a magnitude spectrogram into two low-rank matrices. Our approach is flexible in that the subspaces of singing voice and music accompaniment are both learned from data. Evaluation on the MIR-1K dataset shows that the approach improves the source-to-distortion ratio (SDR) and the source-to-interference ratio (SIR), but not the source-to-artifact ratio (SAR).
منابع مشابه
Separation of Singing Voice from Music Background
Songs are representation of audio signal and musical instruments. An audio signal separation system should be able to identify different audio signals such as speech, background noise and music. In a song the singing voice provides useful information regarding pitch range, music content, music tempo and rhythm. An automatic singing voice separation system is used for attenuating or removing the...
متن کاملSinging Voice Separation from Monaural Recordings
Separating singing voice from music accompaniment has wide applications in areas such as automatic lyrics recognition and alignment, singer identification, and music information retrieval. Compared to the extensive studies of speech separation, singing voice separation has been little explored. We propose a system to separate singing voice from music accompaniment from monaural recordings. The ...
متن کاملA Singing Voice Removal System Using Spectral Energy Comparison
Separating technique for singing voice from music accompaniment is very useful in original sound type Karaoke instrument. We propose a real-time system to separate singing voice from music accompaniment for stereo recordings. Proposed algorithm consists of two stages. The first stage is a spectral change detector. The last stage is a selective vocal separation in frequency bins. Listening tests...
متن کاملChord Recognition Based on Temporal Correlation Support Vector Machine
In this paper, we propose a method called temporal correlation support vector machine (TCSVM) for automatic major-minor chord recognition in audio music. We first use robust principal component analysis to separate the singing voice from the music to reduce the influence of the singing voice and consider the temporal correlations of the chord features. Using robust principal component analysis,...
متن کاملSinging Voice separation from Polyphonic Music Accompanient using Compositional Model
There are abundant real time applications for singing voice separation from mixed audio. By means of Robust Principal Component Analysis (RPCA) which is a compositional model for segregation, which decomposes the mixed source audio signal into low rank and sparse components, where it is presumed that musical accompaniment as low rank subspace since musical signal model is repetitive in characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013