Adversarial Neural Machine Translation

نویسندگان

  • Lijun Wu
  • Yingce Xia
  • Li Zhao
  • Fei Tian
  • Tao Qin
  • Jian-Huang Lai
  • Tie-Yan Liu
چکیده

In this paper, we study a new learning paradigm for Neural Machine Translation (NMT). Instead of maximizing the likelihood of the human translation as in previous works, we minimize the distinction between human translation and the translation given by a NMT model. To achieve this goal, inspired by the recent success of generative adversarial networks (GANs), we employ an adversarial training architecture and name it as AdversarialNMT. In Adversarial-NMT, the training of the NMT model is assisted by an adversary, which is an elaborately designed Convolutional Neural Network (CNN). The goal of the adversary is to differentiate the translation result generated by the NMT model from that by human. The goal of the NMT model is to produce high quality translations so as to cheat the adversary. A policy gradient method is leveraged to co-train the NMT model and the adversary. Experimental results on English→French and German→English translation tasks show that Adversarial-NMT can achieve significantly better translation quality than several strong baselines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Author Attribute Anonymity by Adversarial Training of Neural Machine Translation

Text-based analysis methods allow to reveal privacy relevant author attributes such as gender, age and identify of the text’s author. Such methods can compromise the privacy of an anonymous author even when the author tries to remove privacy sensitive content. In this paper, we propose an automatic method, called Adversarial Author Attribute Anonymity Neural Translation (ANT), to combat such te...

متن کامل

Text Generation using Generative Adversarial Training

Generative models reduce the need of acquiring laborious labeling for the dataset. Text generation techniques can be applied for improving language models, machine translation, summarization, and captioning. This project experiments on different recurrent neural network models to build generative adversarial networks for generating texts from noise. The trained generator is capable of producing...

متن کامل

A4NT: Author Attribute Anonymity by Adversarial Training of Neural Machine Translation

Text-based analysis methods allow to reveal privacy relevant author attributes such as gender, age and identify of the text’s author. Such methods can compromise the privacy of an anonymous author even when the author tries to remove privacy sensitive content. In this paper, we propose an automatic method, called Adversarial Author Attribute Anonymity Neural Translation (ANT), to combat such te...

متن کامل

A Comparative Study of English-Persian Translation of Neural Google Translation

Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...

متن کامل

HotFlip: White-Box Adversarial Examples for NLP

Adversarial examples expose vulnerabilities of machine learning models. We propose an efficient method to generate white-box adversarial examples that trick character-level and wordlevel neural models. Our method, HotFlip, relies on an atomic flip operation, which swaps one token for another, based on the gradients of the one-hot input vectors. In experiments on text classification and machine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.06933  شماره 

صفحات  -

تاریخ انتشار 2017