Subspaces of Knot Spaces
نویسندگان
چکیده
The inclusion of the space of all knots of a prescribed writhe in a particular isotopy class into the space of all knots in that isotopy class is a weak homotopy equivalence.
منابع مشابه
Symplectic geometry on symplectic knot spaces
Symplectic knot spaces are the spaces of symplectic subspaces in a symplectic manifold M . We introduce a symplectic structure and show that the structure can be also obtained by the symplectic quotient method. We explain the correspondence between coisotropic submanifolds in M and Lagrangians in the symplectic knot space. We also define an almost complex structure on the symplectic knot space,...
متن کاملar X iv : m at h / 99 05 15 4 v 1 [ m at h . G T ] 2 5 M ay 1 99 9 SUBSPACES OF KNOT SPACES
The inclusion of the space of all knots of a prescribed writhe in a particular isotopy class into the space of all knots in that isotopy class is a weak homotopy equivalence.
متن کاملM-FUZZIFYING INTERVAL SPACES
In this paper, we introduce the notion of $M$-fuzzifying interval spaces, and discuss the relationship between $M$-fuzzifying interval spaces and $M$-fuzzifying convex structures.It is proved that the category {bf MYCSA2} can be embedded in the category {bf MYIS} as a reflective subcategory, where {bf MYCSA2} and {bf MYIS} denote the category of $M$-fuzzifying convex structures of...
متن کاملENTROPY OF GEODESIC FLOWS ON SUBSPACES OF HECKE SURFACE WITH ARITHMETIC CODE
There are dierent ways to code the geodesic flows on surfaces with negative curvature. Such code spaces give a useful tool to verify the dynamical properties of geodesic flows. Here we consider special subspaces of geodesic flows on Hecke surface whose arithmetic codings varies on a set with innite alphabet. Then we will compare the topological complexity of them by computing their topological ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001