Semi-supervised Learning for Mixed-Type Data via Formal Concept Analysis
نویسندگان
چکیده
• We propose a semi-supervised learning (SSL) method, called SELF (SEmi-supervised Learning via FCA), using Formal Concept Analysis (FCA) – It can handle mixed-type data containing both discrete and continuous variables ∘ Numerical data are discretized by binary encoding / Summary • We propose a semi-supervised learning (SSL) method, called SELF (SEmi-supervised Learning via FCA), using Formal Concept Analysis (FCA) – It can handle mixed-type data containing both discrete and continuous variables ∘ Numerical data are discretized by binary encoding • Main contributions . The first direct SSL method for mixed-type data – FCA is shown to be a powerful tool for machine learning and knowledge discovery . Can handle incomplete datasets – missing values and missing labels . Achieve good accuracy of classification experimentally /
منابع مشابه
Semi-supervised learning on closed set lattices
We propose a new approach for semi-supervised learning using closed set lattices, which have been recently used for frequent pattern mining within the framework of the data analysis technique of Formal Concept Analysis (FCA). We present a learning algorithm, called SELF (SEmi-supervised Learning via FCA), which performs as a multiclass classifier and a label ranker for mixed-type data containin...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملStudies on Computational Learning via Discretization
This thesis presents cutting-edge studies on computational learning. The key issue throughout the thesis is amalgamation of two processes; discretization of continuous objects and learning from such objects provided by data. Machine learning, or data mining and knowledge discovery, has been rapidly developed in recent years and is now becoming a huge topic in not only research communities but a...
متن کاملDetection of Jargon Words in a Text Using Semi-supervised Learning
The proposed approach deals with the detection of jargon words in electronic data in different communication mediums like internet, mobile services etc. But in the real life, the jargon words are not used in complete word forms always. Most of the times, those words are used in different abbreviated forms like sounds alike forms, taboo morphemes etc. This proposed approach detects those abbrevi...
متن کاملDetection of Slang Words in e-Data using semi-Supervised Learning
The proposed algorithmic approach deals with finding the sense of a word in an electronic data. Now a day, in different communication mediums like internet, mobile services etc. people use few words, which are slang in nature. This approach detects those abusive words using supervised learning procedure. But in the real life scenario, the slang words are not used in complete word forms always. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011