Linear Response Eigenvalue Problem Solved by Extended Locally Optimal Preconditioned Conjugate Gradient Methods

نویسندگان

  • Zhaojun Bai
  • Ren-Cang Li
  • Wen-Wei Lin
چکیده

The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear response eigenvalue problem was proposed in [SIAM J. Matrix Anal. Appl., 34(2):392–416, 2013] and later was extended to the generalized linear response eigenvalue problem in [BIT Numer. Math., 54(1):31–54, 2014]. In this paper, we put forward two improvements to the method: a shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4dCG (ELOBP4dCG). Numerical results of the ELOBP4dCG strongly demonstrate the capability of deflation technique and effectiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

We present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product ...

متن کامل

Nonsymmetric multigrid preconditioning for conjugate gradient methods

We numerically analyze the possibility of turning off post-smoothing (relaxation) in geometric multigrid used as a preconditioner in conjugate gradient linear and eigenvalue solvers for the 3D Laplacian. The geometric Semicoarsening Multigrid (SMG) method is provided by the hypre parallel software package. We solve linear systems using two variants (standard and flexible) of the preconditioned ...

متن کامل

Nonsymmetric Preconditioning for Conjugate Gradient and Steepest Descent Methods1

We numerically analyze the possibility of turning off postsmoothing (relaxation) in geometric multigrid when used as a preconditioner in conjugate gradient linear and eigenvalue solvers for the 3D Laplacian. The geometric Semicoarsening Multigrid (SMG) method is provided by the hypre parallel software package. We solve linear systems using two variants (standard and flexible) of the preconditio...

متن کامل

Efficient Solution of Symmetric Eigenvalue Problems Using Multigrid Preconditioners in the Locally Optimal Block Conjugate Gradient Method

We present a short survey of multigrid–based solvers for symmetric eigenvalue problems. We concentrate our attention on “of the shelf” and “black box” methods, which should allow solving eigenvalue problems with minimal, or no, effort on the part of the developer, taking advantage of already existing algorithms and software. We consider a class of such methods, where the multigrid only appears ...

متن کامل

Recent implementations, applications, and extensions of the Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG)

Since introduction [A. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method, SISC (2001) doi:10.1137/S1064827500366124] and efficient parallel implementation [A. Knyazev et al., Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSc, SISC (2007) doi:10.1137/060661624], LOBPCG has been used is a wide r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015