Multiscale modeling of segregation in granular flows
نویسندگان
چکیده
Modeling and simulation of segregation phenomena in granular flows are investigated. Computational models at different scales ranging from particle level (microscale) to continuum level (macroscale) are employed in order to determine the important microscale physics relevant to macroscale modeling. The capability of a multi-fluid model to capture segregation caused by density difference is demonstrated by simulating grain-chaff biomass flows in a laboratory-scale air column and in a combine harvester. The multi-fluid model treats gas and solid phases as interpenetrating continua in an Eulerian frame. This model is further improved by incorporating particle rotation using kinetic theory for rapid granular flow of slightly frictional spheres. A simplified model is implemented without changing the current kinetic theory framework by introducing an effective coefficient of restitution to account for additional energy dissipation due to frictional collisions. The accuracy of predicting segregation rate in a gas-fluidized bed is improved by the implementation. This result indicates that particle rotation is important microscopic physics to be incorporated into the hydrodynamic model. Segregation of a large particle in a dense granular bed of small particles under vertical vibration is studied using molecular dynamics simulations. Wall friction is identified as a necessary condition for the segregation. Large-scale force networks bearing larger-than-average forces are found with the presence of wall friction. The role of force networks in assisting rising of the large particle is analyzed. Single-point force distribution and two-point spatial force correlation are computed. The results show the heterogeneity of forces and a short-range correlation. The short correlation length implies that even dense granular flows may admit local constitutive relations. A modified minimum spanning tree (MST) algorithm is developed to asymptotically recover the force statistics in the force networks. This algorithm provides a possible route to constructing
منابع مشابه
Multiscale Modeling of Granular Flows with Application to Crowd Dynamics
In this paper a new multiscale modeling technique is proposed. It relies on a recently introduced measure-theoretic approach, which allows one to manage the microscopic and the macroscopic scale under a unique framework. In the resulting coupled model the two scales coexist and share information. This way it is possible to perform numerical simulations in which the trajectories and the density ...
متن کاملModeling density segregation in flowing bidisperse granular materials
Preventing segregation in flowing granular mixtures is an ongoing challenge for industrial processes that involve the handling of bulk solids. A recent continuum-based modeling approach accurately predicts spatial concentration fields in a variety of flow geometries for mixtures varying in particle size. This approach captures the interplay between advection, diffusion, and segregation using ki...
متن کاملMixing and Segregation of Granular Materials
Granular materials segregate. Small differences in either size or density lead to flow-induced segregation, a complex phenomenon without parallel in fluids. Modeling of mixing and segregation processes requires the confluence of several tools, including continuum and discrete descriptions (particle dynamics, Monte Carlo simulations, cellular automata computations) and, often, considerable geome...
متن کاملGranular Temperature under Segregation in a Vibrated Granular Bed
The dominant mechanism affecting the flow behavior of granular materials is the random motions of particles resulted from the interactive collisions between particles. The velocity fluctuations induce the segregation in granular flows. The different physical properties of granular material were used to investigate the segregation in a vibrated granular bed in this paper. The image processing te...
متن کاملKinematic segregation of granular mixtures in sandpiles
We study the segregation of granular mixtures in two-dimensional silos using a recently proposed set of coupled equations for surface flows of grains. We study the thick flow regime, where the grains are segregated in the rolling phase. We incorporate this dynamical segregation process, called kinematic sieving, free-surface segregation or percolation, into the theoretical formalism and calcula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015