On supporting hyperplanes to convex bodies∗

نویسندگان

  • Alessio Figalli
  • Young-Heon Kim
  • Robert J. McCann
چکیده

Given a convex set and an interior point close to the boundary, we prove the existence of a supporting hyperplane whose distance to the point is controlled, in a dimensionally quantified way, by the thickness of the convex set in the orthogonal direction. This result has important applications in the regularity theory for Monge-Ampère type equations arising in optimal transportation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotics of Cross Sections for Convex Bodies

For normed isotropic convex bodies in R n we investigate the behaviour of the (n ? 1)-dimensional volume of intersections with hyperplanes orthogonal to a xed direction, considered as a function of the distance of the hyperplane to the origin. It is a conjecture that for arbitrary normed isotropic convex bodies and random directions this function { with high probability { is close to a Gaussian...

متن کامل

A Generalization of Filliman Duality

Filliman duality expresses (the characteristic measure of) a convex polytope P containing the origin as an alternating sum of simplices that share supporting hyperplanes with P . The terms in the alternating sum are given by a triangulation of the polar body P ◦. The duality can lead to useful formulas for the volume of P . A limiting case called Lawrence’s algorithm can be used to compute the ...

متن کامل

The volume product of convex bodies with many hyperplane symmetries

Mahler’s conjecture predicts a sharp lower bound on the volume of the polar of a convex body in terms of its volume. We confirm the conjecture for convex bodies with many hyperplane symmetries in the following sense: their hyperplanes of symmetries have a one-point intersection. Moreover, we obtain improved sharp lower bounds for classes of convex bodies which are invariant by certain reflectio...

متن کامل

A linear programming-based algorithm for the signed separation of (non-smooth) convex bodies

A subdifferentiable global contact detection algorithm, the Supporting Separating Hyperplane (SSH) algorithm, based on the signed distance between supporting hyperplanes of two convex sets is developed. It is shown that for polyhedral sets, the SSH algorithm may be evaluated as a linear program, and that this linear program is always feasible and always subdifferentiable with respect to the con...

متن کامل

The Hadwiger Conjecture for Unconditional Convex Bodies

We investigate the famous Hadwiger Conjecture, focusing on unconditional convex bodies. We establish some facts about covering with homotethic copies for Lp balls, and prove a property of outer normals to unconditional bodies. We also use a projection method to prove a relation between the bounded and unbounded versions of the conjecture. 1 Definitions and Background Definition 1. A convex body...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011