Sentiment Classification in Resource-Scarce Languages by using Label Propagation

نویسندگان

  • Yong Ren
  • Nobuhiro Kaji
  • Naoki Yoshinaga
  • Masashi Toyoda
  • Masaru Kitsuregawa
چکیده

With the advent of consumer generated media (e.g., Amazon reviews, Twitter, etc.), sentiment classification becomes a heated topic. Previous work heavily relies on a large amount of linguistic resources, which are difficult to obtain in resource-scarce languages. To overcome this problem, we investigate the usefulness of label propagation, which is a graph-based semi-supervised learning method. Extensive experimental evaluation on three real datasets demonstrated that label propagation performs more stable than support vector machines (SVMs) and transductive support vector machines (TSVMs) in a document-level sentiment classification task for resource-scarce languages (Chinese in our case).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sentiment Classification in Under-Resourced Languages Using Graph-Based Semi-Supervised Learning Methods

In sentiment classification, conventional supervised approaches heavily rely on a large amount of linguistic resources, which are costly to obtain for under-resourced languages. To overcome this scarce resource problem, there exist several methods that exploit graph-based semisupervised learning (SSL). However, fundamental issues such as controlling label propagation, choosing the initial seeds...

متن کامل

Cross Lingual Sentiment Analysis using Modified BRAE

Cross-Lingual Learning provides a mechanism to adapt NLP tools available for label rich languages to achieve similar tasks for label-scarce languages. An efficient cross-lingual tool significantly reduces the cost and effort required to manually annotate data. In this paper, we use the Recursive Autoencoder architecture to develop a Cross Lingual Sentiment Analysis (CLSA) tool using sentence al...

متن کامل

Learning Bilingual Sentiment Word Embeddings for Cross-language Sentiment Classification

The sentiment classification performance relies on high-quality sentiment resources. However, these resources are imbalanced in different languages. Cross-language sentiment classification (CLSC) can leverage the rich resources in one language (source language) for sentiment classification in a resource-scarce language (target language). Bilingual embeddings could eliminate the semantic gap bet...

متن کامل

Cross-lingual Sentiment Lexicon Learning With Bilingual Word Graph Label Propagation

In this article we address the task of cross-lingual sentiment lexicon learning, which aims to automatically generate sentiment lexicons for the target languages with available English sentiment lexicons. We formalize the task as a learning problem on a bilingual word graph, in which the intra-language relations among the words in the same language and the interlanguage relations among the word...

متن کامل

Semi-Supervised Matrix Completion for Cross-Lingual Text Classification

Cross-lingual text classification is the task of assigning labels to observed documents in a label-scarce target language domain by using a prediction model trained with labeled documents from a label-rich source language domain. Cross-lingual text classification is popularly studied in natural language processing area to reduce the expensive manual annotation effort required in the target lang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011