An Intelligent Credit Assessment System by Kernel Locality Preserving Projections and Manifold - Regularized SVM Models
نویسنده
چکیده
Support vector machines (SVM) have been successfully applied in numerous areas of pattern recognitions, and have demonstrated excellent performance. However, traditional SVM does not make efficient use of both labeled training data and unlabeled testing data. Moreover, one usually encounters high dimensional and nonlinear distributed data in classification problems, especially in financial credit rating assessments. They generally degrade the performance of a classifier due to the curse of dimensionality. This study addresses these problems by proposing a novel intelligent system which integrates a kernel locality preserving projection (KLPP) with a data-dependent manifold-regularized SVM. KLPP is employed to gain a perfect approximation of data manifold and simultaneously preserve local within-class geometric structures according to prior class-label information. Empirical results indicate that, compared with other dimensionality reduction methods and conventional classifiers, the hybrid classifier performs best.
منابع مشابه
An Intelligent Credit Forecasting System Using Supervised Nonlinear Dimensionality Reductions
Kernel classifiers (such as support vector machines) have been successfully applied in numerous areas, and have demonstrated excellent performance. However, due to the high dimensionality and nonlinear distribution of financial input data in credit rating forecasting, finding a suitable low dimensional subspace by nonlinear dimensionality reductions is a key step to improve classifier performan...
متن کاملThree-dimensional face pose estimation based on novel nonlinear discriminant representation
We investigate the appearance manifold of different face poses using manifold learning. The pose estimation problem is, however, exacerbated by changes in illumination, spatial scale, etc. In addition, manifold learning has some disadvantages. First, the discriminant ability of the low-dimensional subspaces obtained by manifold learning often is lower than traditional dimesionality reduction ap...
متن کاملManifold regularized kernel logistic regression for web image annotation
With the rapid advance of Internet technology and smart devices, users often need to manage large amounts of multimedia information using smart devices, such as personal image and video accessing and browsing. These requirements heavily rely on the success of image (video) annotation, and thus large scale image annotation through innovative machine learning methods has attracted intensive atten...
متن کاملA Novel Support Vector Machine with Globality-Locality Preserving
Support vector machine (SVM) is regarded as a powerful method for pattern classification. However, the solution of the primal optimal model of SVM is susceptible for class distribution and may result in a nonrobust solution. In order to overcome this shortcoming, an improved model, support vector machine with globality-locality preserving (GLPSVM), is proposed. It introduces globality-locality ...
متن کاملThe University of Chicago Locality Preserving Projections a Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Doctor of Philosophy Department of Computer Science By
Many problems in information processing involve some form of dimensionality reduction. In this thesis, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP should be seen as an alternative to Principal Component Analysis (PCA) – a classical linear ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014