An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes.
نویسندگان
چکیده
Cells synthesize glucose if deprived of it, and destroy gluconeogenic enzymes upon return to glucose-replete conditions. We found that the Gid4 subunit of the ubiquitin ligase GID in the yeast Saccharomyces cerevisiae targeted the gluconeogenic enzymes Fbp1, Icl1, and Mdh2 for degradation. Gid4 recognized the N-terminal proline (Pro) residue and the ~5-residue-long adjacent sequence motifs. Pck1, the fourth gluconeogenic enzyme, contains Pro at position 2; Gid4 directly or indirectly recognized Pro at position 2 of Pck1, contributing to its targeting. These and related results identified Gid4 as the recognition component of the GID-based proteolytic system termed the Pro/N-end rule pathway. Substrates of this pathway include gluconeogenic enzymes that bear either the N-terminal Pro residue or a Pro at position 2, together with adjacent sequence motifs.
منابع مشابه
Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway.
Rgs2, a regulator of G proteins, lowers blood pressure by decreasing signaling through Gαq. Human patients expressing Met-Leu-Rgs2 (ML-Rgs2) or Met-Arg-Rgs2 (MR-Rgs2) are hypertensive relative to people expressing wild-type Met-Gln-Rgs2 (MQ-Rgs2). We found that wild-type MQ-Rgs2 and its mutant, MR-Rgs2, were destroyed by the Ac/N-end rule pathway, which recognizes N(α)-terminally acetylated (Nt...
متن کاملThe N-end rule pathway and regulation by proteolysis.
The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. Degradation signals (degrons) that are targeted by the N-end rule pathway include a set called N-degrons. The main determinant of an N-degron is a destabilizing N-terminal residue of a protein. In eukaryotes, the N-end rule pathway is a part of the ubiquitin system and consists...
متن کاملProline accumulation and osmotic stress: an overview of P5CS gene in plants
Under osmotic stresses, proline accumulation is an important response of plants to these conditions. Proline is a compatible osmolyte which affects many cellular and molecular aspects of plant in both normal and stressful situations. Proline is shown to be involved in plant development in normal condition and in conferring resistance to plant under biotic and abiotic stresses. Therefore, many s...
متن کاملDegradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events.
The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is subjected to catabolite inactivation and degradation when glucose-starved cells are replenished with fresh glucose. In various studies, the proteasome and the vacuole have each been reported to be the major site of FBPase degradation. Because different growth conditions were used in these studies, we examined whether variation...
متن کاملDegradation of Serotonin N-Acetyltransferase, a Circadian Regulator, by the N-end Rule Pathway.
Serotonin N-acetyltransferase (AANAT) converts serotonin to N-acetylserotonin (NAS), a distinct biological regulator and the immediate precursor of melatonin, a circulating hormone that influences circadian processes, including sleep. N-terminal sequences of AANAT enzymes vary among vertebrates. Mechanisms that regulate the levels of AANAT are incompletely understood. Previous findings were con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 355 6323 شماره
صفحات -
تاریخ انتشار 2017