On the metrics and euler-lagrange equations of computational anatomy.
نویسندگان
چکیده
This paper reviews literature, current concepts and approaches in computational anatomy (CA). The model of CA is a Grenander deformable template, an orbit generated from a template under groups of diffeomorphisms. The metric space of all anatomical images is constructed from the geodesic connecting one anatomical structure to another in the orbit. The variational problems specifying these metrics are reviewed along with their associated Euler-Lagrange equations. The Euler equations of motion derived by Arnold for the geodesics in the group of divergence-free volume-preserving diffeomorphisms of incompressible fluids are generalized for the larger group of diffeomorphisms used in CA with nonconstant Jacobians. Metrics that accommodate photometric variation are described extending the anatomical model to incorporate the construction of neoplasm. Metrics on landmarked shapes are reviewed as well as Joshi's diffeomorphism metrics, Bookstein's thin-plate spline approximate-metrics, and Kendall's affine invariant metrics. We conclude by showing recent experimental results from the Toga & Thompson group in growth, the Van Essen group in macaque and human cortex mapping, and the Csernansky group in hippocampus mapping for neuropsychiatric studies in aging and schizophrenia.
منابع مشابه
Euler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملAn analytic study on the Euler-Lagrange equation arising in calculus of variations
The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...
متن کاملNumerical solution of variational problems via Haar wavelet quasilinearization technique
In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.
متن کاملInvariant higher-order variational problems: Reduction, geometry and applications
This thesis is centred around higher-order invariant variational problems defined on Lie groups. We are mainly motivated by applications in computational anatomy and quantum control, but the general framework is relevant in many other contexts as well. We first develop a higher-order analog of Euler–Poincaré reduction theory for variational problems with symmetry and discuss the important examp...
متن کاملAnalytic Continuation, the Chern-gauss-bonnet Theorem, and the Euler-lagrange Equations in Lovelock Theory for Indefinite Signature Metrics
We use analytic continuation to derive the Euler-Lagrange equations associated to the Pfaffian in indefinite signature (p, q) directly from the corresponding result in the Riemannian setting. We also use analytic continuation to derive the Chern-Gauss-Bonnet theorem for pseudo-Riemannian manifolds with boundary directly from the corresponding result in the Riemannian setting. Complex metrics on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annual review of biomedical engineering
دوره 4 شماره
صفحات -
تاریخ انتشار 2002